设ΔABC的内角A,B,C所对的边分别为a,b,c,且acosB-bcosA=3/5c(1)求tanA/tanB的值(2)求tan(A-B)的最大值
2个回答
展开全部
1)acosB-bcosA=3/5c , 所以 (a/c) * cosB - (b/c) * cosA = 3 / 5 .
From Law of Sine (正弦定理) we get (sinA / SinC) * cosB - (sinB/ SinC) * cosA = 3 / 5.
Simplifying this equation we get sin(A - B) / sin(C) = 3 / 5 and further we get sin(A - B) / sin(A + B) = 3 / 5. (2)
Next Expand equation (2), (sinA * cosB - cosA * sin B ) / (sinA * sinB + cosA * sin B) = 3 / 5 and we can get 2 * sinA * cosB = 8 cosA * sin B.
Therefore, sinA cos B / ( cosA * sin B ) = tanA / tanB = 4. End
2) From part (1) tan(A) =4 × tan B , and now tan( A - B ) = ( tanA - tanB ) / (1 + tanA * tanB) = 3 tanB / (1 +4 tan^2 (B)) = 3 / ( (1 / tanB )+ 4 tanB ) <= 3 / 4, and when tan B = 1/2 the equality stands.
End of Answer, hope it helps
From Law of Sine (正弦定理) we get (sinA / SinC) * cosB - (sinB/ SinC) * cosA = 3 / 5.
Simplifying this equation we get sin(A - B) / sin(C) = 3 / 5 and further we get sin(A - B) / sin(A + B) = 3 / 5. (2)
Next Expand equation (2), (sinA * cosB - cosA * sin B ) / (sinA * sinB + cosA * sin B) = 3 / 5 and we can get 2 * sinA * cosB = 8 cosA * sin B.
Therefore, sinA cos B / ( cosA * sin B ) = tanA / tanB = 4. End
2) From part (1) tan(A) =4 × tan B , and now tan( A - B ) = ( tanA - tanB ) / (1 + tanA * tanB) = 3 tanB / (1 +4 tan^2 (B)) = 3 / ( (1 / tanB )+ 4 tanB ) <= 3 / 4, and when tan B = 1/2 the equality stands.
End of Answer, hope it helps
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询