振荡型间断点和跳跃型间断点有什么区别呢?
1个回答
展开全部
极限为常数时,属于第一类且为可去间断点;左右极限存在但不相等时,属于第一类间断点且为跳跃间断点;左右极限至少有一个不存在时,属于第二类;极限趋于无穷时,属于第二类的无穷间断点。
振荡间断点,间断点处的极限振荡不存在的间断点,属于第二类间断点。注意,此处是振荡不存在,并不是极限为无穷,不要混淆。在高等数学的四类间断点中,振荡间断点是最特殊最重要的间断点,因为振荡是唯一的可能存在不定积分(原函数存在定理)的间断点,也是唯一一个可能可积的第二类间断点。
毫无疑问,凡是间断点x0,一定是f(x0)不存在(包括有定义不存在和无定义不存在)或者存在但不在函数上,即间断点x0处的值一定是不存在或者存在且不同时等于该点处左右极限的值的。
一般在中国大陆教材中,间断点x0处可以无定义,但在间断点x0的去心邻域内有定义,即间断点双侧存在定义才会讨论间断点,没有双侧定义不讨论间断,也就是你所学的基本上都不讨论,也不考没有双侧定义的间断,这点要注意。但在国际教材中,比如菲氏《微积分教程》中,存在间断点单侧定义,即同一间断点可以左侧为无穷间断,右侧为跳跃间断。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询