1/1+sinx的不定积分是什么?

 我来答
娱乐八卦爱好者
2022-01-31 · TA获得超过2202个赞
知道小有建树答主
回答量:2720
采纳率:100%
帮助的人:42万
展开全部

1/1+sinx的不定积分是tanx-secx+C。

具体回答如下:

∫1/(1+sinx) dx

=∫(1-sinx) / [(1+sinx)(1-sinx)] dx

=∫(1-sinx) / (1-sin²x) dx

=∫(1-sinx) / cos²x dx

=∫(sec²x - secxtanx) dx

=tanx-secx+C

不定积分的意义:

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在。

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式