求微分方程yy''=3y'^2的通解,简述过程不要只给答案。谢谢
2个回答
展开全部
y * y'' = 3(y')²
(令u = y' = dy/dx,y'' = d²y/dx² = d(y')/dx = du/dx = du/dy * dy/dx = du/dy * u
y * du/dy * u = 3u²
y * du/dy = 3u
du/u = 3*du/y
ln(u) = 3ln(y) + C
u = e^[ln(y³) + C]
= y³ * C1
dy/dx = y³ * C1
dy/y³ = C1*dx
-1/(2y²) = C1*x + C2
2y² = -1/(C1*x + C2)
y² = -1/[2(C1*x + C2)]
= C3/(2x + C4)
弄漂亮点就是y² = C₁/(2x + C₂)
这里所有的常数项都是不同的
(令u = y' = dy/dx,y'' = d²y/dx² = d(y')/dx = du/dx = du/dy * dy/dx = du/dy * u
y * du/dy * u = 3u²
y * du/dy = 3u
du/u = 3*du/y
ln(u) = 3ln(y) + C
u = e^[ln(y³) + C]
= y³ * C1
dy/dx = y³ * C1
dy/y³ = C1*dx
-1/(2y²) = C1*x + C2
2y² = -1/(C1*x + C2)
y² = -1/[2(C1*x + C2)]
= C3/(2x + C4)
弄漂亮点就是y² = C₁/(2x + C₂)
这里所有的常数项都是不同的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询