在三角形中,D为BC边上一点,BC=3BD,AD=根号2,角ADB=135°

在三角形ABC中,D为BC边上一点,BC等于3BD,AD等于根号2,角ADB等于135度。若AC等于根号2AB,则BD等于多少.我用余弦定理联立方程,可是不会计算,求详细... 在三角形ABC中,D为BC边上一点,BC等于3BD,AD等于根号2,角ADB等于135度。若AC等于根号2AB,则BD等于多少.
我用余弦定理联立方程,可是不会计算,求 详细的计算过程。
展开
慕野清流
2012-03-02 · TA获得超过3.6万个赞
知道大有可为答主
回答量:5141
采纳率:80%
帮助的人:2362万
展开全部
第一种解法
利用余弦定理:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质:
(1)a^2=b^2+c^2-2*b*c*CosA
(2)b^2=a^2+c^2-2*a*c*CosB
(3)c^2=a^2+b^2-2*a*b*CosC

设AC=b,AB=c,BD=x,DC=2x
对三角形ADC有:
b^2=AD^2+DC^2-2AD*DC*cos(180-135)=2+4x^2-4x√2*cos45=4x^2-4x+2
对三角形ADB有:
c^2=AD^2+BD^2-2AD*BD*cos135=2+x^2-2x√2cos135=x^2+2x+2

又b=√2c,代入可解得x=2+√5

第二种解法:
解:作AE⊥BC于E,角ADB等于135度,AD等于根号2,可知:AE=DE=1
设BD=x,则CD=2x,BE=x+1,CE=2x-1,
AB=√(BE^2+AE^2)=√[(x+1)^2+1]
AC=√(CE^2+AE^2)=√[(2x-1)^2+1]
AC=√2AB
则:(x+1)^2+1=2[(2x-1)^2+1]
展开化简:x^2-4x-1=0
解得:x=2+√5(负值舍去)
GamryRaman
2023-06-12 广告
N沟道耗尽型MOS管工作在恒流区时,g极与d极之间的电位有固定的大小关系。这是因为当MOS管工作在恒流区时,由于源极和漏极电压相等,G极电压(即源极电压)为0,而D极电压(即漏极电压)受栅极电压控制。由于G极电压为0,因此在恒流区时,D极电... 点击进入详情页
本回答由GamryRaman提供
百度网友c8b51968f
2012-03-02 · TA获得超过6777个赞
知道大有可为答主
回答量:1625
采纳率:66%
帮助的人:922万
展开全部
解:作AE⊥BC于E,角ADB等于135度,AD等于根号2,可知:AE=DE=1
设BD=x,则CD=2x,BE=x+1,CE=2x-1,
AB=√(BE^2+AE^2)=√[(x+1)^2+1]
AC=√(CE^2+AE^2)=√[(2x-1)^2+1]
AC=√2AB
(2x-1)^2+1=2[(x+1)^2+1]
x^2-4x-1=0
x=2+√5(负值舍去)

利用余弦定理:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质:
(1)a^2=b^2+c^2-2*b*c*CosA
(2)b^2=a^2+c^2-2*a*c*CosB
(3)c^2=a^2+b^2-2*a*b*CosC

设AC=b,AB=c,BD=x,DC=2x
对三角形ADC有:
b^2=AD^2+DC^2-2AD*DC*cos(180-135)=2+4x^2-4x√2*cos45=4x^2-4x+2
对三角形ADB有:
c^2=AD^2+BD^2-2AD*BD*cos135=2+x^2-2x√2cos135=x^2+2x+2

又b=√2c,代入可解得x=2+√5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
playboy2446810
2012-03-07
知道答主
回答量:30
采纳率:0%
帮助的人:6.7万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式