1个回答
展开全部
[﹙x-1﹚/x-﹙x-2﹚/﹙x+1﹚]/[﹙2x²-x﹚/﹙x²+2x+1﹚]
=[﹙x-1﹚﹙x+1﹚/x﹙x+1﹚-﹙x-2﹚x/x﹙x+1﹚]/[x﹙2x-1﹚/﹙x+1﹚²]
=﹛[﹙x²-1﹚-x²+2x]/x﹙x+1﹚﹜/[x﹙2x-1﹚/﹙x+1﹚²]
=[﹙2x-1﹚/x﹙x+1﹚]·[﹙x+1﹚²/x﹙2x-1﹚]
=﹙1/x﹚·[﹙x+1﹚/x]
=﹙x+1﹚/x²
=1/x+1/x²
∵x²-2x-2=0 ∴x≠0 ∴两边都除以2x²得:1/2-1/x-1/x²=0
∴1/x+1/x²=1/2
∴原式=1/2
=[﹙x-1﹚﹙x+1﹚/x﹙x+1﹚-﹙x-2﹚x/x﹙x+1﹚]/[x﹙2x-1﹚/﹙x+1﹚²]
=﹛[﹙x²-1﹚-x²+2x]/x﹙x+1﹚﹜/[x﹙2x-1﹚/﹙x+1﹚²]
=[﹙2x-1﹚/x﹙x+1﹚]·[﹙x+1﹚²/x﹙2x-1﹚]
=﹙1/x﹚·[﹙x+1﹚/x]
=﹙x+1﹚/x²
=1/x+1/x²
∵x²-2x-2=0 ∴x≠0 ∴两边都除以2x²得:1/2-1/x-1/x²=0
∴1/x+1/x²=1/2
∴原式=1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询