已知tan(π/4+θ)+tan(π/4-θ)=4,且-π<θ<-π/2,求sin²θ-2sinθcosθ-cos²θ的值
展开全部
tan( π/4 + θ ) + tan( π/4 - θ ) = 4
[ sin( π/4 + θ )cos( π/4 - θ ) + cos( π/4 + θ )sin( π/4 - θ )] / [cos( π/4 + θ )cos( π/4 - θ )] = 4
sin( π/2 ) / [cos( π/4 + θ )cos( π/4 - θ )] = 4
cos( π/4 + θ )cos( π/4 - θ ) = 1 / 4
( cos π/2 + cos 2θ ) / 2= 1 / 4
cos 2θ = 1 / 2
sin 2θ = √( 1 - cos² 2θ ) = √3 / 2
sin² θ - 2sin θ cos θ - cos² θ = - ( sin 2θ + cos 2θ ) = - (√3 + 1) / 2
[ sin( π/4 + θ )cos( π/4 - θ ) + cos( π/4 + θ )sin( π/4 - θ )] / [cos( π/4 + θ )cos( π/4 - θ )] = 4
sin( π/2 ) / [cos( π/4 + θ )cos( π/4 - θ )] = 4
cos( π/4 + θ )cos( π/4 - θ ) = 1 / 4
( cos π/2 + cos 2θ ) / 2= 1 / 4
cos 2θ = 1 / 2
sin 2θ = √( 1 - cos² 2θ ) = √3 / 2
sin² θ - 2sin θ cos θ - cos² θ = - ( sin 2θ + cos 2θ ) = - (√3 + 1) / 2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询