已知经过点P(2,0),斜率为4/3的直线和抛物线y^2=2x相交于A,B两点,设线段AB的中点为

已知经过点P(2,0),斜率为4/3的直线和抛物线y^2=2x相交于A,B两点,设线段AB的中点为M,求点M的坐标。要用参数的方法!... 已知经过点P(2,0),斜率为4/3的直线和抛物线y^2=2x相交于A,B两点,设线段AB的中点为M,求点M的坐标。 要用参数的方法! 展开
 我来答
杨柳风83
2014-12-30 · 知道合伙人教育行家
杨柳风83
知道合伙人教育行家
采纳数:4976 获赞数:114084
2009年大学毕业,10年参加工作,在古浪县新堡初级中学教书

向TA提问 私信TA
展开全部
由题意可得直线参数方程为x=2+3t,y=4t,
为求交点坐标先解方程(4t)^2=2*(2+3t),即8t^2-3t-2=0,
设其解为t1、t2,则对应有A=(2+3t1,4t1),B=(2+3t2,4t2),
根据韦达定理,AB中点M所对应的参数为t=(t1+t2)/2=3/16,
所以Mx=2+3*(3/16)=41/16,My=4*(3/16)=3/4,即得到M(41/16,3/4)。
sfjjkkfd
2014-12-30 · 超过16用户采纳过TA的回答
知道答主
回答量:242
采纳率:0%
帮助的人:52.8万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式