设数列{an}的前n项和为Sn,已知2Sn+1=Sn+4(n∈N*),a1=2(1)证明:数列{an}是等比数列;(2)设bn=an2
设数列{an}的前n项和为Sn,已知2Sn+1=Sn+4(n∈N*),a1=2(1)证明:数列{an}是等比数列;(2)设bn=an2,{bn}的前n项和为Tn,试比较S...
设数列{an}的前n项和为Sn,已知2Sn+1=Sn+4(n∈N*),a1=2(1)证明:数列{an}是等比数列;(2)设bn=an2,{bn}的前n项和为Tn,试比较Sn2Tn与3的大小;(3)证明:不存在正整数n和大于4的正整数m使得等式am+1=Sn+1?mSn?m成立.
展开
展开全部
(1)证明:∵2Sn+1=Sn+4,∴2Sn=Sn-1+4(n≥2),
相减得,2an+1=an,即
=
(n≥2),
由2S2=S1+4得a2=1,则a3=
,即
=
,
∴{an}是以2为首项,
为公比的等比数列;
(2)解:∵an=(
)n-2,Sn=
即Sn=4(1-(
)n),
bn=(
)n-2,Tn=
(1-(
)n),
令p=(
)n>0,
=
=3×
=3(-1+
)
当n→+∞时,p→0,
→3,
∴
<3;
(3)证明:若存在正整数n和大于4的正整数m使得等式am+1=
相减得,2an+1=an,即
an+1 |
an |
1 |
2 |
由2S2=S1+4得a2=1,则a3=
1 |
2 |
a2 |
a1 |
1 |
2 |
∴{an}是以2为首项,
1 |
2 |
(2)解:∵an=(
1 |
2 |
2(1?(
| ||
1?
|
1 |
2 |
bn=(
1 |
4 |
16 |
3 |
1 |
4 |
令p=(
1 |
2 |
Sn2 |
Tn |
16(1?p)2 | ||
|
1?p |
1+p |
2 |
1+p |
当n→+∞时,p→0,
Sn2 |
Tn |
∴
Sn2 |
Tn |
(3)证明:若存在正整数n和大于4的正整数m使得等式am+1=