3个回答
展开全部
1.
n=1时,a1=S1=2
n≥2时,an=Sn-S(n-1)=2ⁿ-2^(n-1)=2^(n-1)
n=1时,a1=2^0=1,不满足通项公式
数列{an}的通项公式为
an=2
n=1
2^(n-1)
n≥2
2.
b(n+1)=bn+(2n-1)
b(n+1)-bn=2n-1
bn-b(n-1)=2(n-1)-1
b(n-1)-b(n-2)=2(n-2)-1
…………
b2-b1=2×1-1
累加
bn-b1=2×[1+2+...+(n-1)]-(n-1)=2n(n-1)/2
-(n-1)=n²-2n+1
bn=b1+n²-2n+1=-1+n²-2n+1=n²-2n
数列{bn}的通项公式为bn=n²-2n
3.
n=1时,
c1=a1·b1/1=2·(-1)/1=-2
T1=c1=-2
n≥2时,
cn=an·bn/n=2^(n-1)·(n²-2n)/n=2^(n-1)·n(n-2)/n=(n-2)·2^(n-1)
Tn=T1+c2+c3+...+cn=-2+(2-2)·2+(3-2)·2²+(4-2)·2³+...+(n-2)·2^(n-1)
=-2+0·2+1·2²+2·2³+...+(n-2)·2^(n-1)
2Tn=-4+0·2²+1·2³+...+(n-3)·2^(n-1)+(n-2)·2ⁿ
Tn-2Tn=-Tn=2+2²+2³+...+2^(n-1)
-(n-2)·2ⁿ
=2·[2^(n-1)
-1]/(2-1)
-(n-2)·2ⁿ
=(3-n)·2ⁿ
Tn=(n-3)·2ⁿ
n=1时,a1=S1=2
n≥2时,an=Sn-S(n-1)=2ⁿ-2^(n-1)=2^(n-1)
n=1时,a1=2^0=1,不满足通项公式
数列{an}的通项公式为
an=2
n=1
2^(n-1)
n≥2
2.
b(n+1)=bn+(2n-1)
b(n+1)-bn=2n-1
bn-b(n-1)=2(n-1)-1
b(n-1)-b(n-2)=2(n-2)-1
…………
b2-b1=2×1-1
累加
bn-b1=2×[1+2+...+(n-1)]-(n-1)=2n(n-1)/2
-(n-1)=n²-2n+1
bn=b1+n²-2n+1=-1+n²-2n+1=n²-2n
数列{bn}的通项公式为bn=n²-2n
3.
n=1时,
c1=a1·b1/1=2·(-1)/1=-2
T1=c1=-2
n≥2时,
cn=an·bn/n=2^(n-1)·(n²-2n)/n=2^(n-1)·n(n-2)/n=(n-2)·2^(n-1)
Tn=T1+c2+c3+...+cn=-2+(2-2)·2+(3-2)·2²+(4-2)·2³+...+(n-2)·2^(n-1)
=-2+0·2+1·2²+2·2³+...+(n-2)·2^(n-1)
2Tn=-4+0·2²+1·2³+...+(n-3)·2^(n-1)+(n-2)·2ⁿ
Tn-2Tn=-Tn=2+2²+2³+...+2^(n-1)
-(n-2)·2ⁿ
=2·[2^(n-1)
-1]/(2-1)
-(n-2)·2ⁿ
=(3-n)·2ⁿ
Tn=(n-3)·2ⁿ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1=s1=3
a(n)=s(n)-s(n-1)=3^n-3^(n-1)=2×3^(n-1)
题不全
a(n)=s(n)-s(n-1)=3^n-3^(n-1)=2×3^(n-1)
题不全
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1
an=Sn-Sn-1=3^n-3^(n-1)=2 * 3^(n-1)
2
bn+1=bn+(2n-1)
bn=bn-1+(2n-3)
..
b2=b1+1
b1=-1
Sbn=Sbn-1 -1 +[1+(2n-3)](n-1)/2
Sbn-Sbn-1=(n-1)^2-1
bn=(n-1)^2-1
an=Sn-Sn-1=3^n-3^(n-1)=2 * 3^(n-1)
2
bn+1=bn+(2n-1)
bn=bn-1+(2n-3)
..
b2=b1+1
b1=-1
Sbn=Sbn-1 -1 +[1+(2n-3)](n-1)/2
Sbn-Sbn-1=(n-1)^2-1
bn=(n-1)^2-1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询