lim(x→0)[1/(sinx)^2-(cosx)^2/x^2]
2个回答
展开全部
lim(x→0)[1/(sinx)^2-(cosx)^2/x^2]
=lim(x→0)[x^2-sin^2 x(cosx)^2]/[x^2(sinx)^2]
=lim(x→0)[x^2-sin^2 x(cosx)^2]/[x^4]
=lim(x→0)[x^2-1/4sin^2 (2x)]/[x^4] (0/0)
=lim(x→0)[2x-sin (2x)cos(2x)]/[4x^3]
=lim(x→0)[2x-1/2sin (4x)]/[4x^3] (0/0)
=lim(x→0)[2-2cos (4x)]/[12x^2]
=lim(x→0)(4x)^2/[12x^2]
=4/3
=lim(x→0)[x^2-sin^2 x(cosx)^2]/[x^2(sinx)^2]
=lim(x→0)[x^2-sin^2 x(cosx)^2]/[x^4]
=lim(x→0)[x^2-1/4sin^2 (2x)]/[x^4] (0/0)
=lim(x→0)[2x-sin (2x)cos(2x)]/[4x^3]
=lim(x→0)[2x-1/2sin (4x)]/[4x^3] (0/0)
=lim(x→0)[2-2cos (4x)]/[12x^2]
=lim(x→0)(4x)^2/[12x^2]
=4/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim(x->0)1/[1/sinx^2-cosx^2/x^2
=lim(x->0)x^2sinx^2/(x^2-sinx^2cosx^2)
=lim(x->0)x^2sinx^2/(x^2-(1/4)(sin2x)^2
=lim(x->0)(2xsinx^2+x^2sin2x)/(2x-(1/2)sin4x)
=lim(x->0)(2sinx^2+4xsin2x+2x^2cos2x)/(2-2cos4x)
=lim(x->0)(6sin2x+12xcos2x-4x^2sin2x)/(8sin4x)
=lim(x->0) (24cos2x-32xsin2x-8x^2cos2x)/(32cos4x)
=24/32=3/4
=lim(x->0)x^2sinx^2/(x^2-sinx^2cosx^2)
=lim(x->0)x^2sinx^2/(x^2-(1/4)(sin2x)^2
=lim(x->0)(2xsinx^2+x^2sin2x)/(2x-(1/2)sin4x)
=lim(x->0)(2sinx^2+4xsin2x+2x^2cos2x)/(2-2cos4x)
=lim(x->0)(6sin2x+12xcos2x-4x^2sin2x)/(8sin4x)
=lim(x->0) (24cos2x-32xsin2x-8x^2cos2x)/(32cos4x)
=24/32=3/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询