
1+1÷(1+2)+1÷(1+2+3)+……1÷(1+……+50) 用小学的方法如何解
展开全部
1+1÷(1+2)+1÷(1+2+3)+……1÷(1+……+50)
=1+1/[2*(1+2)/2]+1/[3(1+3)/2]+...+1/[50(1+50)/2]
=1+2/(2*3)+2/(3*4)+...+2/(50*51)
=1+2[1/(2*3)+1/(3*4)+...+1/(50*51)]
=1+2(1/2-1/3+1/3-1/4+...+1/50-1/51)
=1+2(1/2-1/51)
=1+1-2/51
=2-2/51
=2(1-1/51)
=2*50/51
=100/51.
=1+1/[2*(1+2)/2]+1/[3(1+3)/2]+...+1/[50(1+50)/2]
=1+2/(2*3)+2/(3*4)+...+2/(50*51)
=1+2[1/(2*3)+1/(3*4)+...+1/(50*51)]
=1+2(1/2-1/3+1/3-1/4+...+1/50-1/51)
=1+2(1/2-1/51)
=1+1-2/51
=2-2/51
=2(1-1/51)
=2*50/51
=100/51.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1+1÷(1+2)+1÷(1+2+3)+……1÷(1+……+50)
==2*【1/2+1/2*(1+2)+1/2*(1+2++3)+……+1/2*(1+2+3+……+50)】
=2*【1-1/2+1/2-1/3+1/3-1/4+……+1/50-1/511】
=2*【1-1/51】
=100/51
==2*【1/2+1/2*(1+2)+1/2*(1+2++3)+……+1/2*(1+2+3+……+50)】
=2*【1-1/2+1/2-1/3+1/3-1/4+……+1/50-1/511】
=2*【1-1/51】
=100/51
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询