如图点M分别是正方形ABCD的边AB的中点,将△ADM沿DM翻折得△A‘DM,延长MA’交DC于E,求A’D/A’E
解:连DG,因为DA'=DA=DC DG=DG
∴RT△DA'G≅RT△DCG
∴CG=A'G
设正方形ABCD边长为1,GC=A'G=x
因为AB∥DE
∴△GCE∼△GBM
∴X/(1-X)=CE/(1/2)⇒CE=(X/2)/(1-X)
X/(1-X)=GE/(X+1/2)⇒GE=[X•(X+1/2)]/(1-X)
因为(GE^2)=(EC^2)+(GC^2)
分别代入解得X=1/3
GE=[1/3×(1/3+1/2)]/[1-(1/3)]
=5/12
∴A'E=5/12+1/3=3/4
∴A'D/A'E=1/(3/4)=4/3
解法2:连DG,因为DA'=DA=DC DG=DG
∴RT△DA'G≅RT△DCG
∴CG=A'G
延长DA'交BC于H,连MH,
∠CGE=∠A'GH
∴RT△CGE≅RT△A'GH
∴A'H=CE
因为MB=MA' MH=MH
∴RT△MA'H≅RT△MBH
∴BH=A'H
∴BF=CE
因为∠A'MB=∠A'DA(同为∠A'MA的补角)
∴∠A'MB/2=∠A'DA/2
即∠BMH=∠ADM
∴RT△BMH∼RT△ADM
因为MA=AD/2
∴BH=BM/2=AB/4
∴DE=5AB/4
AD=4AB/4
由勾股数可知A'E=3AB/4
∴A'D/A'E=4/3