已知:如图,在梯形ABCD中,AD∥BC,AB=DC=AD=2,求∠B的度数及AC的长.
展开全部
设BC的中点为O,连接OA则AB=OB=OC=AD=CD;
那么∠AOB=∠OAB=∠OAD=∠OAC+∠OCA
∠OAD=∠OAC+∠CAD
又因为 ∠OCA=∠CAD
所以 ∠OAC=∠OCA 即OA=OC=OB
△ABO是等边三角形,∠B=60°
又因为 ∠B+∠OAB+∠OCA+∠OAC=180°
即 2×(∠B+∠OCA)=180°
∠BAC=∠B+∠OCA=90°
△BAC是直角三角形
AC²=BC²-AB²=16-4=12
所以AC=2√3
那么∠AOB=∠OAB=∠OAD=∠OAC+∠OCA
∠OAD=∠OAC+∠CAD
又因为 ∠OCA=∠CAD
所以 ∠OAC=∠OCA 即OA=OC=OB
△ABO是等边三角形,∠B=60°
又因为 ∠B+∠OAB+∠OCA+∠OAC=180°
即 2×(∠B+∠OCA)=180°
∠BAC=∠B+∠OCA=90°
△BAC是直角三角形
AC²=BC²-AB²=16-4=12
所以AC=2√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询