如图,在四棱锥P-ABCD中,PB⊥AD,底面ABCD为菱形,∠BAD=60.Q为AD的中点,
如图,在四棱锥P-ABCD中,PB⊥AD,底面ABCD为菱形,∠BAD=60.Q为AD的中点,点M在线段PC上,MC=2PM.(1)求证:PA∥平面MQB;(2)当平面P...
如图,在四棱锥P-ABCD中,PB⊥AD,底面ABCD为菱形,∠BAD=60.Q为AD的中点,点M在线段PC上,MC=2PM.
(1)求证:PA∥平面MQB;
(2)当平面PAD⊥平面ABCD,PA=AB时,求直线MB与平面PQB所成角的正切值 展开
(1)求证:PA∥平面MQB;
(2)当平面PAD⊥平面ABCD,PA=AB时,求直线MB与平面PQB所成角的正切值 展开
1个回答
展开全部
解:取MC中点为E,BC中点为F。连接FE,DF。则FE//BM,FD//BQ。则平面FED//平面BMQ,在平面PADE中,MQ//EB。又MC=2PM,这PM=ME。Q是AD的中点。则AQ=QD。所以在四边形PADE是平行四边形,且AP//MP,所以,PA∥平面MQB。
PB⊥AD,且AD⊥BQ。所以AD⊥面PBQ.这AD⊥PQ,又Q是AD的中点。这PDA是等腰三角形。AP=PD。又AP=AB。所以AP是等边三角形。这PQ=根号3AD/2=BQ。平面PAD⊥平面ABCD,PQ⊥AD,所以PQ⊥QB.这PB=根号6DA/2。AD⊥面PBQ,这BC⊥面PBQ,则直线MB与平面PQB所成角是角PBM,BC⊥PB。作MG⊥PB,MG=1/3AD。tan<PBM=根号6/6
PB⊥AD,且AD⊥BQ。所以AD⊥面PBQ.这AD⊥PQ,又Q是AD的中点。这PDA是等腰三角形。AP=PD。又AP=AB。所以AP是等边三角形。这PQ=根号3AD/2=BQ。平面PAD⊥平面ABCD,PQ⊥AD,所以PQ⊥QB.这PB=根号6DA/2。AD⊥面PBQ,这BC⊥面PBQ,则直线MB与平面PQB所成角是角PBM,BC⊥PB。作MG⊥PB,MG=1/3AD。tan<PBM=根号6/6
德芯商城
2024-10-28 广告
2024-10-28 广告
电商平台9821HM-06A-N0HF是德芯商城信息科技(深圳)有限公司精心推出的一款高端型号产品,它集成了先进的技术与卓越的性能,专为追求高效、稳定及创新应用的行业客户设计。该产品以其独特的功能特性,在市场中脱颖而出,广泛应用于数据处理、...
点击进入详情页
本回答由德芯商城提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询