如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°,动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点

如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°,动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另... 如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°,动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动。(1)求AB的长;(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由。 展开
 我来答
冷眸②498
2014-11-26 · 超过74用户采纳过TA的回答
知道答主
回答量:124
采纳率:0%
帮助的人:174万
展开全部
解:(1)作AE⊥BC,
∵等腰梯形ABCD中,AD=4,BC=9,
∴BE=(BC-AD)÷2=2.5,
∵∠B=45°,
∴AB=
(2)作QF⊥BC,
∵等腰梯形ABCD,
∴∠B=∠C=45°,
∵点P和点Q的运动速度、运动时间相同,BP=x,
∴BP=CQ=x,
∵BC=9,
∴CP=9-x,QF= x,
设△PQC的面积为y,
∴y=(9-x)·
即y=-
∴当x=- 时,y的值最大,
∴当x= 时,△PQC的面积最大;
(3)假设AB上存在点M,使得四边形PCQM为菱形,
∵等腰梯形ABCD,∠B=∠C=45°,
∴CQ=CP=BP=MP,∠B=∠C=∠MPB=45°,
∴∠BMP=45°,
∵∠B=∠APB=∠BMP=45°,
不符合三角形内角和定理,
∴假设不存在,
∴边AB上不存在点M,使得四边形PCQM为菱形。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式