如图所示,在倾角为θ的光滑斜面上,有一长为l的细线,细线的一端固定在O点,另一端拴一质量为m的小球,
如图所示,在倾角为θ的光滑斜面上,有一长为l的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O点到斜面底边的距离Soc...
如图所示,在倾角为θ的光滑斜面上,有一长为l的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O点到斜面底边的距离S oc =L,则小球通过最高点A时的速度表达式v A =______;若小球运动到A点时剪断细线,小球滑落到斜面底边时到C点的距离______.
展开
展开全部
小球恰好能在斜面上做完整的圆周运动,刚小球通过A点时细线的拉力为零,根据圆周运动和牛顿第二定律有: mgsinθ=m
解得:v A =
小球运动到A点时细线断裂,小球在平行底边方向做匀速运动,在垂直底边方向做初速为零的匀加速运动(类平抛运动). 平行底边方向:x=v A t 垂直底边方向:L+l=
联立解得 x= 2(L+l)
故答案为:
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询