椭圆x^2/16+y^2/4=1有两点P、Q.O是原点,若OP、OQ斜率乘积为-1/4.求线段PQ中点的轨迹方程 20
2个回答
展开全部
设P(x1 ,y1)Q(x2 ,y2)中点M(x0,y0)则x1 + x2 = 2x0 ,y1 + y2 = 2y0 ,将P、Q坐标代入椭圆方程并相减可得:(x1)^2 - (x2)^2 = -4[(y1)^2 - (y2)^2]
即:[(y1 - y2)/(x1 - x2)]·[(y1 + y2)/(x1 + x2)] = -1/4
当PQ斜率存在时,可设直线斜率为k ,则k = [(y1 - y2)/(x1 - x2)]
∴k·(y0/x0) = -1/4 ,k = -x0/4y0 ,直线PQ可表示为:y - y0 = (-x0/4y0)(x - x0)
y·4y0 = 4(y0)^2 + (x0)^2 - x·x0 ,记t = 4(y0)^2 + (x0)^2 ,则y·4y0 = t - x·x0
联立直线与椭圆方程:
[(t - y·4y0)^2/(x0)^2] + 4y^2 = 16
或者:x^2 + [(t - x·x0)^2/4(y0)^2] = 16
根据韦达定理:
y1y2 = {[t^2/(x0)^2] - 16}/{[16(y0)^2/(x0)^2] + 4} = [t^2 - 16(x0)^2]/[16(y0)^2 + 4(x0)^2]
x1x2 = {[t^2/4(y0)^2] - 16}/{[(x0)^2/4(y0)^2] + 1} = [t^2 - 64(y0)^2]/[(x0)^2 + 4(y0)^2]
∵OP、OQ斜率乘积 = -1/4 = (y1/x1)·(y2/x2) = (y1y2)/(x1x2)
∴-1/4 = [t^2 - 16(x0)^2]/{4[t^2 - 64(y0)^2]}
∴t^2 - 8(x0)^2 - 32(y0)^2 = 0 ,代入t = 4(y0)^2 + (x0)^2 得:t^2 - 8t = 0 ,t = 0或8
但当t = 0时,意味着PQ的中点M与坐标原点重合,使得k(OP) = k(OQ) ,
显然不满足“OP、OQ斜率乘积为-1/4” ,∴t = 8 = 4(y0)^2 + (x0)^2
整理得:[(x0)^2/8] + [(y0)^2/2] = 1......A式
当PQ斜率k不存在时,有PQ⊥x轴 ,使得M必定在x轴上∴OP、OQ斜率绝对值相等 ,易得分别为1/2和-1/2 ,易知2直线分别为x = 2y和x = -2y ,
∴联立椭圆方程可求得P、Q的坐标,并可以进一步求得M坐标为 (-2√2 ,0)或(2√2 ,0) ,它们均满足A式
∴PQ中点的轨迹方程为:(x^2/8) + (y^2/2) = 1
即:[(y1 - y2)/(x1 - x2)]·[(y1 + y2)/(x1 + x2)] = -1/4
当PQ斜率存在时,可设直线斜率为k ,则k = [(y1 - y2)/(x1 - x2)]
∴k·(y0/x0) = -1/4 ,k = -x0/4y0 ,直线PQ可表示为:y - y0 = (-x0/4y0)(x - x0)
y·4y0 = 4(y0)^2 + (x0)^2 - x·x0 ,记t = 4(y0)^2 + (x0)^2 ,则y·4y0 = t - x·x0
联立直线与椭圆方程:
[(t - y·4y0)^2/(x0)^2] + 4y^2 = 16
或者:x^2 + [(t - x·x0)^2/4(y0)^2] = 16
根据韦达定理:
y1y2 = {[t^2/(x0)^2] - 16}/{[16(y0)^2/(x0)^2] + 4} = [t^2 - 16(x0)^2]/[16(y0)^2 + 4(x0)^2]
x1x2 = {[t^2/4(y0)^2] - 16}/{[(x0)^2/4(y0)^2] + 1} = [t^2 - 64(y0)^2]/[(x0)^2 + 4(y0)^2]
∵OP、OQ斜率乘积 = -1/4 = (y1/x1)·(y2/x2) = (y1y2)/(x1x2)
∴-1/4 = [t^2 - 16(x0)^2]/{4[t^2 - 64(y0)^2]}
∴t^2 - 8(x0)^2 - 32(y0)^2 = 0 ,代入t = 4(y0)^2 + (x0)^2 得:t^2 - 8t = 0 ,t = 0或8
但当t = 0时,意味着PQ的中点M与坐标原点重合,使得k(OP) = k(OQ) ,
显然不满足“OP、OQ斜率乘积为-1/4” ,∴t = 8 = 4(y0)^2 + (x0)^2
整理得:[(x0)^2/8] + [(y0)^2/2] = 1......A式
当PQ斜率k不存在时,有PQ⊥x轴 ,使得M必定在x轴上∴OP、OQ斜率绝对值相等 ,易得分别为1/2和-1/2 ,易知2直线分别为x = 2y和x = -2y ,
∴联立椭圆方程可求得P、Q的坐标,并可以进一步求得M坐标为 (-2√2 ,0)或(2√2 ,0) ,它们均满足A式
∴PQ中点的轨迹方程为:(x^2/8) + (y^2/2) = 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询