如图, △ACB和△DCE都是等腰直角三角形 ∠ACB=∠DCE=90° D为AB上一点
(1)求证:△ACD≌△BCE,(2)若AD=12,BD=5,求DE的长。图形就是一个不规则四边形,EB与AB有点垂直的样子,大概就是这样,CD,BC,AE都是连接了的。...
(1)求证:△ACD≌△BCE,
(2)若AD=12,BD=5,求DE的长。
图形就是一个不规则四边形,EB与AB有点垂直的样子,大概就是这样,CD,BC,AE都是连接了的。 展开
(2)若AD=12,BD=5,求DE的长。
图形就是一个不规则四边形,EB与AB有点垂直的样子,大概就是这样,CD,BC,AE都是连接了的。 展开
3个回答
展开全部
(1)证明:因为ACB是等腰直角三角形
所以AC=BC
角ACB=90度
角A=角ABC=45度
因为DCE是等腰直角三角形
所以CD=DE
因为角ACB=角ACD+角BCD=90度
角DCE=角BCD+角BCE=90度
所以角ACD=角BCE
所以三角形ACD和三角形BCE全等(SAS)
(2)因为三角形ACB是等腰直角三角形
所以AC=BC
角A=45度
角ACB=90度
由勾股定理得:AB^2=AC^2+BC^2
因为AB=AD+BD
因为AD=12 BD=5
所以AB=17
所以AC^2=289/2
AC=2分之17倍根号2
在三角形ACD中,由余弦定理得;
CD^2=AC^2+AD^2-2AC*AD*cosA
CD^2=289/2+12^2-2*2分之17倍根号2*12*根号2/2=169/2
在等腰直角三角形DCE中,由勾股定理得:
DE^2=CD^2+CE^2=169
所以DE=13
所以AC=BC
角ACB=90度
角A=角ABC=45度
因为DCE是等腰直角三角形
所以CD=DE
因为角ACB=角ACD+角BCD=90度
角DCE=角BCD+角BCE=90度
所以角ACD=角BCE
所以三角形ACD和三角形BCE全等(SAS)
(2)因为三角形ACB是等腰直角三角形
所以AC=BC
角A=45度
角ACB=90度
由勾股定理得:AB^2=AC^2+BC^2
因为AB=AD+BD
因为AD=12 BD=5
所以AB=17
所以AC^2=289/2
AC=2分之17倍根号2
在三角形ACD中,由余弦定理得;
CD^2=AC^2+AD^2-2AC*AD*cosA
CD^2=289/2+12^2-2*2分之17倍根号2*12*根号2/2=169/2
在等腰直角三角形DCE中,由勾股定理得:
DE^2=CD^2+CE^2=169
所以DE=13
展开全部
(1)证明:∵△ACB和△DCE都是等腰直角三角形
∴AC=BC,CD=CE,
∵∠ACB=∠DCE=90°
∴∠ECA+∠ACD=90°,∠ACD+∠DCB=90°
∴∠ECA=∠DCB
在△ACD和△BCE中
AC=BC, ∠ECA=∠DCB,CD=CE
∴△ACD≌△BCE(SAS)
(2)解:若AD=12,BD=5,
AB²=AC²+BC²
17²=2AC²
AC=(17/2)√2
在△ACD中,由余弦定理得;
CD²=AC²+AD²-2AC*AD*cosA
CD²=289/2+12²-2*(17/2)√2*12*√2/2=169/2
在等腰直角三角形DCE中,由勾股定理得:
DE²=CD²+CE²=169
所以DE=13
∴AC=BC,CD=CE,
∵∠ACB=∠DCE=90°
∴∠ECA+∠ACD=90°,∠ACD+∠DCB=90°
∴∠ECA=∠DCB
在△ACD和△BCE中
AC=BC, ∠ECA=∠DCB,CD=CE
∴△ACD≌△BCE(SAS)
(2)解:若AD=12,BD=5,
AB²=AC²+BC²
17²=2AC²
AC=(17/2)√2
在△ACD中,由余弦定理得;
CD²=AC²+AD²-2AC*AD*cosA
CD²=289/2+12²-2*(17/2)√2*12*√2/2=169/2
在等腰直角三角形DCE中,由勾股定理得:
DE²=CD²+CE²=169
所以DE=13
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:因为ACB是等腰直角三角形
所以AC=BC
角ACB=90度
角A=角ABC=45度
因为DCE是等腰直角三角形
所以CD=DE
因为角ACB=角ACD+角BCD=90度
角DCE=角BCD+角BCE=90度
所以角ACD=角BCE
所以三角形ACD和三角形BCE全等(SAS)
(2)因为三角形ACB是等腰直角三角形
所以AC=BC
角A=45度
角ACB=90度
由勾股定理得:AB^2=AC^2+BC^2
因为AB=AD+BD
因为AD=12 BD=5
所以AB=17
所以AC^2=289/2
AC=2分之17倍根号2
在三角形ACD中,由余弦定理得;
CD^2=AC^2+AD^2-2AC*AD*cosA
CD^2=289/2+12^2-2*2分之17倍根号2*12*根号2/2=169/2
在等腰直角三角形DCE中,由勾股定理得:
DE^2=CD^2+CE^2=169
所以DE=13
所以AC=BC
角ACB=90度
角A=角ABC=45度
因为DCE是等腰直角三角形
所以CD=DE
因为角ACB=角ACD+角BCD=90度
角DCE=角BCD+角BCE=90度
所以角ACD=角BCE
所以三角形ACD和三角形BCE全等(SAS)
(2)因为三角形ACB是等腰直角三角形
所以AC=BC
角A=45度
角ACB=90度
由勾股定理得:AB^2=AC^2+BC^2
因为AB=AD+BD
因为AD=12 BD=5
所以AB=17
所以AC^2=289/2
AC=2分之17倍根号2
在三角形ACD中,由余弦定理得;
CD^2=AC^2+AD^2-2AC*AD*cosA
CD^2=289/2+12^2-2*2分之17倍根号2*12*根号2/2=169/2
在等腰直角三角形DCE中,由勾股定理得:
DE^2=CD^2+CE^2=169
所以DE=13
追问
可以不用余弦定理么还没学……初二党啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询