若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)乘f(b),且当x大于零时,f(x)大于1
若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)乘f(b),且当x大于零时,f(x)大于1(1)求证:f(x)大于零,(2)求证f(x)为减函数(3)当f(4...
若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)乘f(b),且当x大于零时,f(x)大于1
(1)求证:f(x)大于零,(2)求证f(x)为减函数
(3)当f(4)=1/16时,解不等式f(x-3)乘f(5-x平方)大于或等于1/4 展开
(1)求证:f(x)大于零,(2)求证f(x)为减函数
(3)当f(4)=1/16时,解不等式f(x-3)乘f(5-x平方)大于或等于1/4 展开
2个回答
展开全部
方法1(1)由f(a+b)=f(a).f(b),得f(2a)=[f(a)]^2,令x=2a,则f(x)>=0.
又f(x)是非零函数,所以f(x)>0
(2)f(x+a)=f(x)f(a),f(x)=f(x+a)/f(a)
当x<0时,有x+a<a,f(x)=f(x+a)/f(a)>1,即f(x+a)>f(a),所以,f(x)为减函数。
(3)f(x-3).f(5-x^2)=f(x-3+5-x^2)=f(-x^2+x+2)
原不等式化为:f(-x^2+x+2)≤1/4,两边平方,[f(-x^2+x+2)]^2≤1/16
f[2(-x^2+x+2)]≤1/16
因f(x)为减函数,f(4)=1/16,则有2(-x^2+x+2)>=4,-x^2+x>=0
解得:0≤x≤1
方法2.因为f(a+b)=f(a)f(b),令式中a=b=0得:f(0)=f(0)*f(0),因f(0)不等于0,所以等式两同时消去f(0),得:f(0)=1。
2.令f(a+b)=f(a)f(b)中a=b=x/2,于是f(x)=f(0.5x)*f(0.5x)=(f(0.5x))^2>=0。因为是非零函数,所以对于任意x都有f(x)不等于0,所以f(x)>0。
3.设x1<x2,因为对任意的x属于R,恒有f(x)>0,所以f(x1)/f(x2)=f(x1+x2-x2)/f(x2)=(f(x1-x2)*f(x2))/f(x2),分子分母同时约去f(x2),得:f(x1)/f(x2)=f(x1-x2),因为x1<x2,所以x1-x2<0,所以f(x1-x2)>1,所以f(x1)/f(x2)>1,所以f(x)是R上的减函数。
又f(x)是非零函数,所以f(x)>0
(2)f(x+a)=f(x)f(a),f(x)=f(x+a)/f(a)
当x<0时,有x+a<a,f(x)=f(x+a)/f(a)>1,即f(x+a)>f(a),所以,f(x)为减函数。
(3)f(x-3).f(5-x^2)=f(x-3+5-x^2)=f(-x^2+x+2)
原不等式化为:f(-x^2+x+2)≤1/4,两边平方,[f(-x^2+x+2)]^2≤1/16
f[2(-x^2+x+2)]≤1/16
因f(x)为减函数,f(4)=1/16,则有2(-x^2+x+2)>=4,-x^2+x>=0
解得:0≤x≤1
方法2.因为f(a+b)=f(a)f(b),令式中a=b=0得:f(0)=f(0)*f(0),因f(0)不等于0,所以等式两同时消去f(0),得:f(0)=1。
2.令f(a+b)=f(a)f(b)中a=b=x/2,于是f(x)=f(0.5x)*f(0.5x)=(f(0.5x))^2>=0。因为是非零函数,所以对于任意x都有f(x)不等于0,所以f(x)>0。
3.设x1<x2,因为对任意的x属于R,恒有f(x)>0,所以f(x1)/f(x2)=f(x1+x2-x2)/f(x2)=(f(x1-x2)*f(x2))/f(x2),分子分母同时约去f(x2),得:f(x1)/f(x2)=f(x1-x2),因为x1<x2,所以x1-x2<0,所以f(x1-x2)>1,所以f(x1)/f(x2)>1,所以f(x)是R上的减函数。
参考资料: 周哥
展开全部
(1)任取b>0,
f(b+0)=f(b)*f(0)=>f(0)=1
对于任意的实数a
f(a)*f(-a)=f(-a+a)=f(0)=1=>f(-a)=1/f(a)
由题意知,当x>0时f(x)>0
x<0时,f(-x)>0,f(x)=1/f(-x)>0
=>对于任意的x,f(x)>0
(2)应该是增函数
对于任意的x1,x2,x1<x2
f(x2)=f[x1+(x2-x1)}=f(x1)*f(x2-x1)
由于x2-x1>0,f(x2-x1)>1
=>f(x2)>f(x1)
=>f(x)为增函数
(3)与题目的“当x大于零时,f(x)大于1 ”矛盾
f(b+0)=f(b)*f(0)=>f(0)=1
对于任意的实数a
f(a)*f(-a)=f(-a+a)=f(0)=1=>f(-a)=1/f(a)
由题意知,当x>0时f(x)>0
x<0时,f(-x)>0,f(x)=1/f(-x)>0
=>对于任意的x,f(x)>0
(2)应该是增函数
对于任意的x1,x2,x1<x2
f(x2)=f[x1+(x2-x1)}=f(x1)*f(x2-x1)
由于x2-x1>0,f(x2-x1)>1
=>f(x2)>f(x1)
=>f(x)为增函数
(3)与题目的“当x大于零时,f(x)大于1 ”矛盾
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询