初中一次函数与反比例函数中之间的联系...等要详细!!。和典型的题最好带答案。急!! 20
2个回答
展开全部
自变量k和X的一次函数y有如下关系: y=kx+b (k为任意不为零常数,b为任意常数) 当x取一个值时,y有且只有一个值与x对应。如果有2个及以上个值与x对应时,就不是一次函数。 x为自变量,y为函数值,k为常数,y是x的一次函数。 特别的,当b=0时,y是x的正比例函数。即:y=kx (k为常量,但K≠0)正比例函数图像经过原点。
y=kx=b时
当k>0时,y随x的增大而增大
当k<0时,y随x的增大而减小
一般式
y=ax^2(上标)+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b^2/4a) ;
顶点式
y=a(x+h)^2+k(a≠0,a、m、k为常数)或y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(-h,k)或(h,k)对称轴为x=-h或x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2) [仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的抛物线] ; 重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距) 求根公式
二次函数表达式的右边通常为二次三项式。
求根公式
x是自变量,y是x的二次函数 x1,x2=[-b±(√(b^2-4ac))]/2a (即一元二次方程求根公式)(如右图) 求根的方法还有因式分解法和配方法 二次函数与X轴交点的情况 当△b^2-4ac>0时, 函数图像与x轴有两个交点。 当△b^2-4ac=0时,函数图像与x轴有一个交点。 当△b^2-4ac<0时,函数图像与x轴没有交点。
y=kx=b时
当k>0时,y随x的增大而增大
当k<0时,y随x的增大而减小
一般式
y=ax^2(上标)+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b^2/4a) ;
顶点式
y=a(x+h)^2+k(a≠0,a、m、k为常数)或y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(-h,k)或(h,k)对称轴为x=-h或x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(x-x1)(x-x2) [仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的抛物线] ; 重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距) 求根公式
二次函数表达式的右边通常为二次三项式。
求根公式
x是自变量,y是x的二次函数 x1,x2=[-b±(√(b^2-4ac))]/2a (即一元二次方程求根公式)(如右图) 求根的方法还有因式分解法和配方法 二次函数与X轴交点的情况 当△b^2-4ac>0时, 函数图像与x轴有两个交点。 当△b^2-4ac=0时,函数图像与x轴有一个交点。 当△b^2-4ac<0时,函数图像与x轴没有交点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询