关于抽屉原理的数学应用题及答案和思考过程

一道就可以了... 一道就可以了 展开
 我来答
局乔步清馨
2020-02-28 · TA获得超过1045个赞
知道小有建树答主
回答量:1323
采纳率:92%
帮助的人:7.1万
展开全部
幼儿复园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,制试说明道理.

:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要2113放进同一个抽屉里,也就是说,至少两人挑5261选玩具采用同一搭配方式,选的玩具相同.
上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“4102存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.
抽屉原理虽然简单,但应用却很广泛1653,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式