一道数学题 若函数f(x)=lnx+ln(2-x)+ax在(0,1]上的最大值为1/2,求a的值

 我来答
户如乐9318
2022-08-29 · TA获得超过6632个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:136万
展开全部
1、
f(x)=lnx+ln(2-x)+x
f’(x)=1/x - 1/(2-x) + 1
令f(x)≥0,得:0<x≤√2 或 x≥2
令f(x)<0,得:√2 < x < 2
∴f(x)的单调递增区间为(0,√2]和[2,﹢∞) (这里不能用“∪”)
单调递减区间为(√2,2)
2、
f’(x)=1/x - 1/(2-x) + a
=1/x + 1/(x-2) + a
= [(x-2) + x + ax(x-2)] / [x(x-2)]
=[2(x-1) + ax(x-2)] / [x(x-2)]
∵x∈(0,1],a>0
∴x-1≤0,x-2<0
∴2(x-1) + ax(x-2)<0
又∵x(x-2)<0
∴[2(x-1) + ax(x-2)] / [x(x-2)] >0
即f’(x)>0
∴f(x)在(0,1]上单调递增
∴最大值为f(1)=ln1 + ln(2-1)+a = 1/2
即a=1/2
希望采取,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式