如图1,在三角形ABC中,I是∠ABC和∠ACB的角平分线的交点,是说明∠BIC=90°+二分之一的∠A
2013-03-23
展开全部
证明:因为I是∠ABC和∠ACB的角平分线的交点
所以∠IBC=1/2∠ABC
∠ICB=1/2∠ACB
因为∠ACB+∠ABC+∠A=180度
所以1/2(∠ACB+∠ABC)=90-1/2∠A
因为∠IBC+∠ICB+∠BIC=180度
所以∠BIC=90+½∠A
所以∠IBC=1/2∠ABC
∠ICB=1/2∠ACB
因为∠ACB+∠ABC+∠A=180度
所以1/2(∠ACB+∠ABC)=90-1/2∠A
因为∠IBC+∠ICB+∠BIC=180度
所以∠BIC=90+½∠A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
BIC=180-IBC-ICB=180-(IBC+ICB)=180-[(180-BAC)/2]=180-[90-BAC/2]=90+BAC/2
哇哈哈这个好像应该是初中还是小学的题目吧。。小朋友。。。。。
还好大哥哥都十多年了 还记得。
哇哈哈这个好像应该是初中还是小学的题目吧。。小朋友。。。。。
还好大哥哥都十多年了 还记得。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-07-14
展开全部
不见图形,不好解答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |