设数列an的首项a1=5/6.二次方程an-1x^2-anx+1=0有两个实根α、β满足3α-αβ+3β=1(1)求证{an-1/2}是等
展开全部
(1)由根与系数关系得:α+β=an/a(n-1),αβ=1/a(n-1),
代人3α-αβ+3β=1得3an/a(n-1) -1/a(n-1)=1
整理得3an-1=a(n-1),3(an-1/2)=a(n-1)-1/2
即(an-1/2)/[a(n-1)-1/2]=3,根据等比数列定义可得,公比q=3,首项为5/6-1/2=1/3的等比数列即证。
(2)由等比数列定义可得an=a1*q^(n-1)
所以an-1/2=1/3*3^(n-1),所以an=1/2+1/3*3^(n-1),
(3)sn=a1+a2+.....+an=(1/2+1/3)+(1/2+1/3*3)+.....+[1/2+1/3*3^(n-1)]
=(1/2+1/2.....+1/2)+[1/3+1/3*3+1/3*3^2+.....+1/3*3^(n-1)]
=n/2+1/3(1-3^n)/(1-3)=n/2 - (1-3^n)/6
代人3α-αβ+3β=1得3an/a(n-1) -1/a(n-1)=1
整理得3an-1=a(n-1),3(an-1/2)=a(n-1)-1/2
即(an-1/2)/[a(n-1)-1/2]=3,根据等比数列定义可得,公比q=3,首项为5/6-1/2=1/3的等比数列即证。
(2)由等比数列定义可得an=a1*q^(n-1)
所以an-1/2=1/3*3^(n-1),所以an=1/2+1/3*3^(n-1),
(3)sn=a1+a2+.....+an=(1/2+1/3)+(1/2+1/3*3)+.....+[1/2+1/3*3^(n-1)]
=(1/2+1/2.....+1/2)+[1/3+1/3*3+1/3*3^2+.....+1/3*3^(n-1)]
=n/2+1/3(1-3^n)/(1-3)=n/2 - (1-3^n)/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询