如图所示,在等腰Rt△ABC中,AC=BC,以斜边AB作等边△ABD,使得C、D在AB的同侧;再以CD为边作等边△CDE,
1个回答
展开全部
延长DC交AB于点F,
因为,AC = BC ,AD = BD ,
所以,C、D都在线段AB的垂直平分线上,
即有:CD⊥AB ,AF = FB ;
因为,DF是等边△ABD的高,则DF平分∠ADB;
可得:∠ADC = ½∠ADB = 30° ,
所以,∠ADE = ∠CDE-∠ADC = 30° = ∠ADC ;
在△AED和△ACD中,ED = CD ,∠ADE = ∠ADC ,AD为公共边,
所以,△AED ≌ △ACD ,
可得:AE = AC ;
因为,CF是等腰Rt△ABC斜边上的高,
所以,CF = AF ,AC = √2CF ;
设 CF = AF = x ,则 AE = AC = √2x ,
因为,CD+CF = DF = √3AF ,
即有:√3-1+x = √3x ,
解得:x = 1 ,
所以,AE = √2x = √2 。
因为,AC = BC ,AD = BD ,
所以,C、D都在线段AB的垂直平分线上,
即有:CD⊥AB ,AF = FB ;
因为,DF是等边△ABD的高,则DF平分∠ADB;
可得:∠ADC = ½∠ADB = 30° ,
所以,∠ADE = ∠CDE-∠ADC = 30° = ∠ADC ;
在△AED和△ACD中,ED = CD ,∠ADE = ∠ADC ,AD为公共边,
所以,△AED ≌ △ACD ,
可得:AE = AC ;
因为,CF是等腰Rt△ABC斜边上的高,
所以,CF = AF ,AC = √2CF ;
设 CF = AF = x ,则 AE = AC = √2x ,
因为,CD+CF = DF = √3AF ,
即有:√3-1+x = √3x ,
解得:x = 1 ,
所以,AE = √2x = √2 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询