已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点
展开全部
连接CG
∵∠ABC=45°,CD⊥AB,∴△BDC是等腰三角形
又∵H是BC边的中点
∴DH是BC边的垂直平分线
∴BG=CG
∵BE⊥AC
∵BE平分∠ABC
∴∠GBH=∠GCH=22.5°
∴∠EGC=45°
∴△CEG为直角等腰△
∴BG=CG=√2CE
∵∠ABC=45°,CD⊥AB,∴△BDC是等腰三角形
又∵H是BC边的中点
∴DH是BC边的垂直平分线
∴BG=CG
∵BE⊥AC
∵BE平分∠ABC
∴∠GBH=∠GCH=22.5°
∴∠EGC=45°
∴△CEG为直角等腰△
∴BG=CG=√2CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:∵CD⊥AB,BE⊥AC,
∴∠BDC=∠ADC=∠AEB=90°,
∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,
∴∠A=∠DFB,
∵∠ABC=45°,∠BDC=90°,
∴∠DCB=∠DBC=45°,
∴BD=DC,
在△BDF和△CDA中
∵∠BDF=∠CDA∠A=∠DFBBD=DC,
∴△BDF≌△CDA,
∴BF=AC;
(2)证明:∵BE⊥AC,
∴∠AEB=∠CEB,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
在△AEB和△CEB中
∵∠AEB=∠CEBBE=BE∠ABE=∠CBE,
∴△AEB≌△CEB,
∴AE=CE,
即CE=12AC,
∵由(1)知AC=BF,
∴CE=12BF.
∴∠BDC=∠ADC=∠AEB=90°,
∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,
∴∠A=∠DFB,
∵∠ABC=45°,∠BDC=90°,
∴∠DCB=∠DBC=45°,
∴BD=DC,
在△BDF和△CDA中
∵∠BDF=∠CDA∠A=∠DFBBD=DC,
∴△BDF≌△CDA,
∴BF=AC;
(2)证明:∵BE⊥AC,
∴∠AEB=∠CEB,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
在△AEB和△CEB中
∵∠AEB=∠CEBBE=BE∠ABE=∠CBE,
∴△AEB≌△CEB,
∴AE=CE,
即CE=12AC,
∵由(1)知AC=BF,
∴CE=12BF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接CG
∵∠ABC=45°,CD⊥AB,∴△BDC是等腰三角形
又∵H是BC边的中点
∴DH是BC边的垂直平分线
∴BG=CG
∵BE⊥AC
∵BE平分∠ABC
∴∠GBH=∠GCH=22.5°
∴∠EGC=45°
∴△CEG为直角等腰△
∴BG=CG=2CE
∵∠ABC=45°,CD⊥AB,∴△BDC是等腰三角形
又∵H是BC边的中点
∴DH是BC边的垂直平分线
∴BG=CG
∵BE⊥AC
∵BE平分∠ABC
∴∠GBH=∠GCH=22.5°
∴∠EGC=45°
∴△CEG为直角等腰△
∴BG=CG=2CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.
∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
在Rt△DFB和Rt△DAC中,
∵
∠DBF=∠DCABD=CD∠BDF=∠ADC
∴Rt△DFB≌Rt△DAC(ASA).
∴BF=AC;
(2)证明:∵BE平分∠ABC,
∴∠ABE=∠CBE.
在Rt△BEA和Rt△BEC中
∠ABE=∠CBEBE=BE∠BEA=∠BEC
,
∴Rt△BEA≌Rt△BEC(ASA).
∴CE=AE=
1
2
AC.
又由(1),知BF=AC,
∴CE=
1
2
AC=
1
2
BF;
(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.
H为BC中点,则DH⊥BC(等腰三角形“三线合一”)
连接CG,则BG=CG,∠GCB=∠GBC=
1
2
∠ABC=
1
2
×45°=22.5°,∠EGC=45°.
又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.
∵△GEC是直角三角形,
∴CE2+GE2=CG2,
∵DH垂直平分BC,
∴BG=CG,
∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=
2
CE,
∴BG>CE.
∴△BCD是等腰直角三角形.
∴BD=CD.
∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
在Rt△DFB和Rt△DAC中,
∵
∠DBF=∠DCABD=CD∠BDF=∠ADC
∴Rt△DFB≌Rt△DAC(ASA).
∴BF=AC;
(2)证明:∵BE平分∠ABC,
∴∠ABE=∠CBE.
在Rt△BEA和Rt△BEC中
∠ABE=∠CBEBE=BE∠BEA=∠BEC
,
∴Rt△BEA≌Rt△BEC(ASA).
∴CE=AE=
1
2
AC.
又由(1),知BF=AC,
∴CE=
1
2
AC=
1
2
BF;
(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.
H为BC中点,则DH⊥BC(等腰三角形“三线合一”)
连接CG,则BG=CG,∠GCB=∠GBC=
1
2
∠ABC=
1
2
×45°=22.5°,∠EGC=45°.
又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.
∵△GEC是直角三角形,
∴CE2+GE2=CG2,
∵DH垂直平分BC,
∴BG=CG,
∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=
2
CE,
∴BG>CE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询