过双曲线x^/3-y^/6=1的右焦点F2倾斜角为30度的直线交双曲线于A B两点求三角形AF1B的周长。 谢谢!
2个回答
展开全部
先画个图 因为已知与x轴截距 因此设直线x=√3y +3
联立x²/3-y²/6=1 和x=√3y +3 推出
5y²+12√3y+12=0
可以解得y1=-2√3 y2=-2√3/5 分别代入双曲线
所以A(-3,-2√3)B(9/5,-2√3/5)
AB=2|y1-y2|=16√3/5 AF1=|y1|=2√3 BF1=14√3/5
C(周长)=AB+AF1+BF1=8√3
希望在数学方面能帮到您 谢谢
联立x²/3-y²/6=1 和x=√3y +3 推出
5y²+12√3y+12=0
可以解得y1=-2√3 y2=-2√3/5 分别代入双曲线
所以A(-3,-2√3)B(9/5,-2√3/5)
AB=2|y1-y2|=16√3/5 AF1=|y1|=2√3 BF1=14√3/5
C(周长)=AB+AF1+BF1=8√3
希望在数学方面能帮到您 谢谢
追问
谢谢哈! 不过还有没有什么简便方法啊?
追答
简便一点的 a=√3
C=|AF1|+|AB|+|BF1|
=|AF1|+|AF2|-|BF2|+|BF2|+2a
=|AF1|+|AF2|+2a
=|AF1|+|AF1|+2a+2a
=2|AF1|+4a
=8√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询