直线与抛物线y方=2px(p>0)交于A,B两点,O为坐标原点,若OA⊥OB,OD⊥AB,垂足是D(2,-1),求抛物线方程
1个回答
展开全部
设A(a²/(2p), a), B(b²/(2p), b)
OD的斜率为-1/2, AB的斜率= 2 = (b-a)/[b²/(2p) - a²/(2p)] = 2p/(a+b)
a + b = p (1)
AB的方程: y + 1 = 2(x-2), y = 2x-5
OA的斜率m = a/[a²/(2p)] = 2p/a
OB的谢谢n = b/[b²/(2p)] = 2p/b
二者垂直,mn = 4p²/(ab) = -1
ab = -4p² (2)
将A, B的坐标代入AB的方程:
a = a²/p -5 (3)
b = b²/p -5 (4)
(3)+(4): a + b = (a²+b²)/p -10 = [(a+b)²-2ab]/p -10
代入(1)(2): p = 5/4 (舍去p = 0)
y² = 5x/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询