已知函数y=f(x+1)是定义域为R的偶函数,且在〔1.+∞)上单调递增,则不等式f(2x-1)<f(x+2)的解集为?
2个回答
展开全部
解:因为函数y=f(x+1)是定义域为R的偶函数,所以函数f(x)应该有对称轴x=1,
又由于又由于函数y=f(x+1)是定义域为R的偶函数,且在[1,+∞)上单调递增,
所以不等式f(2x-1)<f(x+2)⇔f(|2x-1-1|)<f(|x+2-1|),
所以|2x-2|<|x+1|⇔3x²-10x+3<0,
解得1/3<x<3
所以所求不等式的解集为:{x|1/3<x<3}
又由于又由于函数y=f(x+1)是定义域为R的偶函数,且在[1,+∞)上单调递增,
所以不等式f(2x-1)<f(x+2)⇔f(|2x-1-1|)<f(|x+2-1|),
所以|2x-2|<|x+1|⇔3x²-10x+3<0,
解得1/3<x<3
所以所求不等式的解集为:{x|1/3<x<3}
追问
且在[1,+∞)上单调递增,
所以不等式f(2x-1)<f(x+2)⇔f(|2x-1-1|)<f(|x+2-1|),
这个是怎么来的?能说的详细点不?
追答
由于函数y=f(x+1)是定义域为R的偶函数,所以函数f(x)应该有对称轴x=1,又由于函数y=f(x+1)是定义域为R的偶函数,且在[1,+∞)上单调递增,所以函数f(x)应该在[1,+∞)上单调递增,利用函数的单调性即可求出不等式f(2x-1)<f(x+2)的解集.
现在明白了吗
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询