求下列不定积分 ∫(arctan e^x)/(e^2x)dx
答案是:(-1/2)[e^-(2x)*arctane^x+arctane^x+e^(-x)]+C我的解法是:原式=∫(arctane^x)/(e^x)d(1/e^x)令1...
答案是:(-1/2)[e^-(2x)*arctane^x+arctane^x+e^(-x)]+C
我的解法是:原式= ∫(arctan e^x)/(e^x)d(1/e^x)
令1/e^x=t = ∫(arctan 1/t)/t dt
= (-1/2) ∫(arctan 1/t) d(t^2)
= (-1/2) [(t^2)(arctan 1/t) - ∫(t^2)d(arctan 1/t)]
= (-1/2) [(t^2)(arctan 1/t) + ∫(t^2)/(1+t^2)dt]
= (-1/2) [(t^2)(arctan 1/t) + ∫(t^2+1-1)/(1+t^2)dt
= (-1/2) {(t^2)(arctan 1/t) +∫1-[1/(1+t^2)]dt}
= (-1/2)[e^-(2x)*arctane^x-arctane^(-x)+e^(-x)]+C
不知道自己哪步算错了,和答案总是差一个数啊,是第一步换元有问题吗?求解答。。。 展开
我的解法是:原式= ∫(arctan e^x)/(e^x)d(1/e^x)
令1/e^x=t = ∫(arctan 1/t)/t dt
= (-1/2) ∫(arctan 1/t) d(t^2)
= (-1/2) [(t^2)(arctan 1/t) - ∫(t^2)d(arctan 1/t)]
= (-1/2) [(t^2)(arctan 1/t) + ∫(t^2)/(1+t^2)dt]
= (-1/2) [(t^2)(arctan 1/t) + ∫(t^2+1-1)/(1+t^2)dt
= (-1/2) {(t^2)(arctan 1/t) +∫1-[1/(1+t^2)]dt}
= (-1/2)[e^-(2x)*arctane^x-arctane^(-x)+e^(-x)]+C
不知道自己哪步算错了,和答案总是差一个数啊,是第一步换元有问题吗?求解答。。。 展开
3个回答
展开全部
∫(arctan e^x)/(e^x)d(1/e^x)
这里你少了1个负号吧
d(1/e^x)=-1/e^x
这里你少了1个负号吧
d(1/e^x)=-1/e^x
追问
恩,把负号提到前面去了。
追答
你好,你做的没问题,刚看了第一步就没看下去
其实arctane^x+arctan^(-x)=1
所以你的-arctane^(-x)=arctane^x-1
和答案就是差一个常数1
但是不定积分常数是没关系的
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
好像没问题啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询