已知数列an的前n项和为Sn
展开全部
解:(1)由sn+s(n-1)=kan^2+2 (1)
得s(n+1)+sn=ka(n+1)^2+2 (2)
(2)-(1) 得a(n+1)+an=k[a(n+1)+an][a(n+1)-an]
因为an>0,k>0 故a(n+1)-an=1/k
{an}是等差数列,则an=1+(n-1)/k
(2) 1/[an*a(n+1)]=k^2/[(n+k-1)(n+k)]=k^2*[1/(n+k-1)-1/(n+k)]
则Tn=k^2*[1/k-1/(k+1)+1/(k+1)-1/(k+2)+……+1/(n+k-1)-1/(n+k)] (裂项相消)
=k^2*[1/k-1/(n+k)]
=nk/(n+k)
=k/(1+k/n)<k
故0<k<=2,即存在0<k<=2 符合题意
得s(n+1)+sn=ka(n+1)^2+2 (2)
(2)-(1) 得a(n+1)+an=k[a(n+1)+an][a(n+1)-an]
因为an>0,k>0 故a(n+1)-an=1/k
{an}是等差数列,则an=1+(n-1)/k
(2) 1/[an*a(n+1)]=k^2/[(n+k-1)(n+k)]=k^2*[1/(n+k-1)-1/(n+k)]
则Tn=k^2*[1/k-1/(k+1)+1/(k+1)-1/(k+2)+……+1/(n+k-1)-1/(n+k)] (裂项相消)
=k^2*[1/k-1/(n+k)]
=nk/(n+k)
=k/(1+k/n)<k
故0<k<=2,即存在0<k<=2 符合题意
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询