如图,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠BAC交AC于E,过C作CD⊥BE于D,连接AD,求证:∠ADB=45°
1个回答
展开全部
证明:延长CD与BA的延长线交于点F
∵∠BAC=90,AB=AC
∴∠ABE+∠AEB=90,∠CAF=∠BAC=90,∠ABC=∠ACB=45
∵CD⊥BE
∴∠BDC=∠BDF=90
∴∠ACF+∠CED=90
∵∠AEB=∠CED
∴∠ABE=∠ACF
∴△ABE≌△ACF (ASA),
∴BE=CF
∵BE平分∠BAC
∴∠CBD=∠ABD=∠ABC/2=22.5
∴∠ACF=22.5
∵BD=BD
∴△CBD≌△FBD (ASA)
∴CD=DF=CF/2
∴D是CF的中点
∴AD=CD
∴∠CAD=∠ACF=22.5
∴∠ADC=180-∠CAD+∠ACF=135
∴∠ADB=∠ADC-∠BDC=45°
∵∠BAC=90,AB=AC
∴∠ABE+∠AEB=90,∠CAF=∠BAC=90,∠ABC=∠ACB=45
∵CD⊥BE
∴∠BDC=∠BDF=90
∴∠ACF+∠CED=90
∵∠AEB=∠CED
∴∠ABE=∠ACF
∴△ABE≌△ACF (ASA),
∴BE=CF
∵BE平分∠BAC
∴∠CBD=∠ABD=∠ABC/2=22.5
∴∠ACF=22.5
∵BD=BD
∴△CBD≌△FBD (ASA)
∴CD=DF=CF/2
∴D是CF的中点
∴AD=CD
∴∠CAD=∠ACF=22.5
∴∠ADC=180-∠CAD+∠ACF=135
∴∠ADB=∠ADC-∠BDC=45°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询