已知函数f(x)=2cos(wx+π/6)(其中w>0,x∈R)的最小正周期为10π

设α,β∈[0,π/2],f﹙5α+5π/3﹚=-6/5f(5β-5π/6)=16/17,求cos(α+β﹚的值... 设α,β∈[0,π/2],f﹙5α+5π/3﹚=-6/5f(5β-5π/6)=16/17,求cos(α+β﹚的值 展开
feidao2010
2012-08-23 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
解答:
T=10π=2π/w
∴ w=1/5
∴ f(x)=2cos[(1/5)x+π/6]
f﹙5α+5π/3﹚=2cos(α+π/3+π/6)=-6/5
即 -2sinα=-6/5
即 sinα=3/5,则 cosα=4/5
f(5β-5π/6)=2cos(β-π/6+π/6)=16/17
即 cosβ=8/17,则sinβ=15/17
cos(α+β)
=cosαcosβ-sinαsinβ
=(4/5)*(8/17)-(3/5)(15/17)
=-13/85
来自:求助得到的回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式