设函数f(x)在[-π,π]上连续、恒正(π是Pai),且f(x)f(-x)=1,则∫(上限π,下限-π)(cosx)^2/[1+f(x)]dx=__

丘冷萱Ad
2012-09-19 · TA获得超过4.8万个赞
知道大有可为答主
回答量:5205
采纳率:37%
帮助的人:3983万
展开全部
∫[-π→π] cos²x/[1+f(x)] dx

令x=-u,则u:π→-π,dx=-du
=-∫[π→-π] cos²u/[1+f(-u)] du
先交换上下限
=∫[-π→π] cos²u/[1+f(-u)] du

分子分母同乘以f(u)
=∫[-π→π] cos²uf(u)/[f(u)+f(-u)f(u)] du

=∫[-π→π] cos²uf(u)/[f(u)+1] du
将积分变量换成x
=∫[-π→π] cos²xf(x)/[f(x)+1] du

左边=右边,因此左边=(1/2)(左边+右边)
∫[-π→π] cos²x/[1+f(x)] dx

=(1/2){∫[-π→π] cos²x/[1+f(x)] dx + ∫[-π→π] cos²xf(x)/[f(x)+1] du }
=(1/2)∫[-π→π] cos²x[1+f(x)]/[1+f(x)] dx
=(1/2)∫[-π→π] cos²x dx
=(1/4)∫[-π→π] (1+cos2x) dx
=π/2

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
追问

多谢你给的思路,我优化了一下:

追答
正确。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式