线性代数,施密特正交化,课本有说,正交矩阵化实对称矩阵A为对角矩阵步骤:
课本有说,正交矩阵化实对称矩阵A为对角矩阵步骤:1.求出A的全部特征值λ1,λ2,λ3,...,λn;2.对每个特征值λi,求出相应齐次线性方程组(λiE-A)x=0的一...
课本有说,正交矩阵化实对称矩阵A为对角矩阵步骤:
1. 求出A的全部特征值λ1,λ2,λ3, ..., λn;
2. 对每个特征值λi, 求出相应齐次线性方程组 (λiE-A)x=0 的一个基础解系,并利用施密特正交化方法将这个基础解系中的向量先正交化再单位化(如λi为单特征值或该基础解系已是正交向量组,则只需要单位化),从而得到属于特征值λi的正交化单位化的特征向量。
3. ....
实对称矩阵的定理有说,属于不同特征值的特征向量是正交的
我的问题是:基础解系是由特征向量组成,那就天然正交了,为何第二步要提及施密特正交化?有什么例子需要正交化的? 展开
1. 求出A的全部特征值λ1,λ2,λ3, ..., λn;
2. 对每个特征值λi, 求出相应齐次线性方程组 (λiE-A)x=0 的一个基础解系,并利用施密特正交化方法将这个基础解系中的向量先正交化再单位化(如λi为单特征值或该基础解系已是正交向量组,则只需要单位化),从而得到属于特征值λi的正交化单位化的特征向量。
3. ....
实对称矩阵的定理有说,属于不同特征值的特征向量是正交的
我的问题是:基础解系是由特征向量组成,那就天然正交了,为何第二步要提及施密特正交化?有什么例子需要正交化的? 展开
2个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |