如图,将矩形纸片ABCD按如下顺序折叠
延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕G...
延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图 ⑥).(1)求图 ②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.
展开
2个回答
展开全部
(1)解:如图②,B'F交CG于M.
∠B=∠B'FC=90°,得AB∥EF.
CM/MG=CF/FB=1,故
B'M=CG/2=GM;且
∠BGM=∠B'MG;
又∠BGM=∠B'GM.
故
∠B'MG=∠B'GM,B'G=B'M=GM,⊿GB'M
为等边三角形.
∴∠B'GM=60°,∠B'CG=30°,∠BCB'=2∠B'CG=60°.
(2)解:BG=B'G,∠BGC=∠B'GC,
所以,GC垂直平分BB'.(等腰三
角形"三线合一")
∠B=∠B'FC=90°,得AB∥EF.
CM/MG=CF/FB=1,故
B'M=CG/2=GM;且
∠BGM=∠B'MG;
又∠BGM=∠B'GM.
故
∠B'MG=∠B'GM,B'G=B'M=GM,⊿GB'M
为等边三角形.
∴∠B'GM=60°,∠B'CG=30°,∠BCB'=2∠B'CG=60°.
(2)解:BG=B'G,∠BGC=∠B'GC,
所以,GC垂直平分BB'.(等腰三
角形"三线合一")
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询