规定Cmx=x(x-1)…(x-m+1)m!,其中x∈R,m是正整数,且CX0=1.这是组合数Cnm(n,m是正整数,且m≤n)的一

规定Cmx=x(x-1)…(x-m+1)m!,其中x∈R,m是正整数,且CX0=1.这是组合数Cnm(n,m是正整数,且m≤n)的一种推广.(1)求C-153的值;(2)... 规定Cmx=x(x-1)…(x-m+1)m!,其中x∈R,m是正整数,且CX0=1.这是组合数Cnm(n,m是正整数,且m≤n)的一种推广.(1)求C-153的值;(2)组合数的两个性质:①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m是否都能推广到Cxm(x∈R,m∈N*)的情形?若能推广,请写出推广的形式并给予证明;若不能请说明理由.(3)已知组合数Cnm是正整数,证明:当x∈Z,m是正整数时,Cxm∈Z. 展开
 我来答
偶归000
推荐于2016-07-22 · TA获得超过153个赞
知道答主
回答量:100
采纳率:100%
帮助的人:112万
展开全部
(1)由题意C-153=
-15×(-16)×(-17)
3!
=-C173=-680   …(4分)
(2)性质①Cnm=Cnn-m不能推广,例如x=
2
时,
C
1
2
有定义,但
C
2
-1
2
无意义;
性质②Cnm+Cnm-1=Cn+1m 能推广,它的推广形式为Cxm+Cxm-1=Cx+1m,x∈R,m∈N*
证明如下:当m=1时,有Cx1+Cx0=x+1=Cx+11;   …(1分)
当m≥2时,有Cxm+Cxm-1=
x(x-1)…(x-m+1)
m!
+
x(x-1)…(x-m+2)
(m-1)!
=
x(x-1)…(x-m+2)
(m-1)!
×(
(x-m+1)
m
+1)
=
x(x-1)…(x-m+1)(x+1)
m!
=Cx+1m,(6分)
(3)由题意,x∈Z,m是正整数时
当x≥m时,组合数Cxm∈z成立;
当0≤x<m 时,
C
m
x
=
x(x-1)(x-2)???0???(x-m+1)
m!
=0∈Z
,结论也成立;
当x<0时,因为-x+m-1>0,∴Cxm=
x(x-1)…(x-m+1)
m!
=(-1)m
(-x+m-1)…(-x+1)(-x)
m!
=(-1)mC-x+m-1m∈z(7分)
综上所述当x∈Z,m是正整数时,Cxm∈Z
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式