如图,P1,P2是反比例函数y=k/x(k≠0)在第一象限图像上的两点,点A1,A2是X轴上的两点,且点A1的坐标为
如图,P1,P2是反比例函数y=k/x(k≠0)在第一象限图像上的两点,点A1,A2是X轴上的两点,且点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角...
如图,P1,P2是反比例函数y=k/x(k≠0)在第一象限图像上的两点,点A1,A2是X轴上的两点,且点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则点A2的坐标为多少, 麻烦吧过程写详细些。谢谢!
展开
3个回答
展开全部
过P1点作P1⊥x轴交x轴于点B,则P1B是等边△P1OA1的高,由"三线合一"知P1B同时是
△P1OA1的OA1边上的中
∵A1的坐标为(2,0)
∴OA1=2
∴OB=1/2OA1=1
又∵ 在等边△P1OA1中,P1O=OA1=2
∴在RT△P1OB中,PB=√(P1O²-OB²)=√(2²-1²)=√3
∴P1的坐标为(1,√3)
而P1在反比例函数y=k/x(k≠0)的图像上
∴√3=k/1,得k=√3
设A2的坐标为(t,0)
则A1A2=OA2-OA1=t-2
过P2点作P2C⊥x轴交x轴于点C
∴A1C=1/2A1A2=(1/2)×(t-2)
OC=OA1+A1C=2+(1/2)×(t-2)=(1/2)×(t+2)
P2C=√3A1C=(√3/2)×(t-2)
∴P2的坐标是((1/2)×(t+2),(√3/2)×(t-2))
而P2在反比例函数y=√3/x的图像上
∴(√3/2)×(t-2))=(√3)/[(1/2)×(t+2)]
解得:t=2√2或-2√2(负号舍去)
故A2的坐标为(2√2,0)
△P1OA1的OA1边上的中
∵A1的坐标为(2,0)
∴OA1=2
∴OB=1/2OA1=1
又∵ 在等边△P1OA1中,P1O=OA1=2
∴在RT△P1OB中,PB=√(P1O²-OB²)=√(2²-1²)=√3
∴P1的坐标为(1,√3)
而P1在反比例函数y=k/x(k≠0)的图像上
∴√3=k/1,得k=√3
设A2的坐标为(t,0)
则A1A2=OA2-OA1=t-2
过P2点作P2C⊥x轴交x轴于点C
∴A1C=1/2A1A2=(1/2)×(t-2)
OC=OA1+A1C=2+(1/2)×(t-2)=(1/2)×(t+2)
P2C=√3A1C=(√3/2)×(t-2)
∴P2的坐标是((1/2)×(t+2),(√3/2)×(t-2))
而P2在反比例函数y=√3/x的图像上
∴(√3/2)×(t-2))=(√3)/[(1/2)×(t+2)]
解得:t=2√2或-2√2(负号舍去)
故A2的坐标为(2√2,0)
展开全部
∵A1的坐标为(2,0)
∴OA1=2
∴OB=1/2OA1=1
又∵ 在等边△P1OA1中,P1O=OA1=2
∴在RT△P1OB中,PB=√(P1O²-OB²)=√(2²-1²)=√3
则A1A2=OA2-OA1=t-2
过P2点作P2C⊥x轴交x轴于点C
∴A1C=1/2A1A2=(1/2)×(t-2)
OC=OA1+A1C=2+(1/2)×(t-2)=(1/2)×(t+2)
P2C=√3A1C=(√3/2)×(t-2)
∴P2的坐标是((1/2)×(t+2),(√3/2)×(t-2))
∴P2的坐标是((1/2)×(t+2),(√3/2)×(t-2))
而P2在反比例函数y=√3/x的图像上
∴(√3/2)×(t-2))=(√3)/[(1/2)×(t+2)]
解得:t=2√2或-2√2(负号舍去)
故A2的坐标为(2√2,0)
∴OA1=2
∴OB=1/2OA1=1
又∵ 在等边△P1OA1中,P1O=OA1=2
∴在RT△P1OB中,PB=√(P1O²-OB²)=√(2²-1²)=√3
则A1A2=OA2-OA1=t-2
过P2点作P2C⊥x轴交x轴于点C
∴A1C=1/2A1A2=(1/2)×(t-2)
OC=OA1+A1C=2+(1/2)×(t-2)=(1/2)×(t+2)
P2C=√3A1C=(√3/2)×(t-2)
∴P2的坐标是((1/2)×(t+2),(√3/2)×(t-2))
∴P2的坐标是((1/2)×(t+2),(√3/2)×(t-2))
而P2在反比例函数y=√3/x的图像上
∴(√3/2)×(t-2))=(√3)/[(1/2)×(t+2)]
解得:t=2√2或-2√2(负号舍去)
故A2的坐标为(2√2,0)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询