已知函数f(x)=sin2x+23sinxcosx+3cos2x+m (m∈R).(Ⅰ)求函数f(x)的单调递增区间及对称轴方程;(
已知函数f(x)=sin2x+23sinxcosx+3cos2x+m(m∈R).(Ⅰ)求函数f(x)的单调递增区间及对称轴方程;(Ⅱ)当x∈[0,π3]时,f(x)的最大...
已知函数f(x)=sin2x+23sinxcosx+3cos2x+m (m∈R).(Ⅰ)求函数f(x)的单调递增区间及对称轴方程;(Ⅱ)当x∈[0,π3]时,f(x)的最大值为9,求实数m的值.
展开
1个回答
展开全部
(Ⅰ)f(x)=sin2x+2
sinxcosx+3cos2x+m
=
+
sin2x+3×
+m
=
sin2x+cos2x+m+2
=2sin(2x+
)+m+2,
由-
+2kπ≤2x+
≤
+2kπ,k∈Z,
得-
+kπ≤x≤
+kπ,k∈Z,
∴函数f(x)的单调增区间为[-
+kπ,
+kπ](k∈Z).
由2x+
=
+kπ(k∈Z)得,x=
+
,k∈Z,
∴函数f(x)的对称轴方程是x=
+
,k∈Z.
(Ⅱ)∵当x∈[0,
]时,
≤2x+
3 |
=
1?cos2x |
2 |
3 |
1+cos2x |
2 |
=
3 |
=2sin(2x+
π |
6 |
由-
π |
2 |
π |
6 |
π |
2 |
得-
π |
3 |
π |
6 |
∴函数f(x)的单调增区间为[-
π |
3 |
π |
6 |
由2x+
π |
6 |
π |
2 |
π |
6 |
kπ |
2 |
∴函数f(x)的对称轴方程是x=
π |
6 |
kπ |
2 |
(Ⅱ)∵当x∈[0,
π |
3 |
π |
6 |
π |
6 |