若定义在R上的函数f(x)=a*x^2/3(a为常数),满足f(-2)>f(1),则f(x)的最小值是?

125516639
2012-11-20 · TA获得超过452个赞
知道小有建树答主
回答量:184
采纳率:50%
帮助的人:131万
展开全部
满足f(-2)>f(1),带入f(x)=a*x^2/3,即a*4/3>a/3
移项合并得a>0
原题变为若定义在R上的函数f(x)=a*x^2/3(a为常数),满足a>0,则f(x)的最小值是?
很简单,一个开口向上的二次函数,最小值是0,从图像都可以看出来
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式