若圆x^2+y^2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为二根号二,则直线l的的取值范围
展开全部
圆x^2+y^2-4x-4y-10=0
即(x-2)²+(y-2)²=18
∴圆心C(2,2),半径r=√18=3√2
圆C上至少有三个不同点到直线
l:ax+by=0的距离为2√2
【当圆C上恰好有三个满足条件的点时,
在l的圆心这一侧有2个,另一侧只有一个
那么需圆心C到直线l的距离=√2,
外侧距离为2√2】
∴根据点到直线距离公式
|2a+2b|/√(a²+b²)≤√2
∴2(a+b)²≤a²+b²
a²-4ab+b²≤0
∴(a/b)²-4(a/b)+1≤0
解得2-√3≤a/b≤2+√3
l的斜率k=-a/b∈[2-√3,2+√3]
∴l的倾斜角的范围是[π/12,5π/12]
本题可以用数形结合的方法做
即(x-2)²+(y-2)²=18
∴圆心C(2,2),半径r=√18=3√2
圆C上至少有三个不同点到直线
l:ax+by=0的距离为2√2
【当圆C上恰好有三个满足条件的点时,
在l的圆心这一侧有2个,另一侧只有一个
那么需圆心C到直线l的距离=√2,
外侧距离为2√2】
∴根据点到直线距离公式
|2a+2b|/√(a²+b²)≤√2
∴2(a+b)²≤a²+b²
a²-4ab+b²≤0
∴(a/b)²-4(a/b)+1≤0
解得2-√3≤a/b≤2+√3
l的斜率k=-a/b∈[2-√3,2+√3]
∴l的倾斜角的范围是[π/12,5π/12]
本题可以用数形结合的方法做
更多追问追答
追问
“|2a+2b|/√(a²+b²)≤√2”为什么啊?这道题怎么数形结合啊?
追答
线心距离=√2时,
过圆心向直线引垂线CP,
垂足为M,交圆与P
则CM=√2,PM=2√2
此时,P是l在圆心外侧唯一的一个满足
条件的点,在圆心这一侧,一定会有2个
满足条件的点,此时满足条件的点是3个
直线距圆心再近一些,外侧就会由一个点
变成4个点
∴|2a+2b|/√(a²+b²)≤√2
展开全部
圆x2+y2-4x-4y-10=0
即(x-2)²+(y-2)²=18
圆心C(2,2),半径r=3√2
圆上至少有三个点到直线ax+by=0
的距离为2√2
那么圆心C到直线的距离≤√2
即|2a+2b|/√(a²+b²)≤√2
∴(2a+2b)²≤2(a²+b²)
∴a²+b²+4ab≤0
∴(a/b)²+4(a/b)+1≤0
∴-2-√3≤a/b≤-2+√3
∴直线斜率k=-a/b
∴tan15º=2-√3≤k≤2+√3=tan75º
∴倾斜角范围是[15º,75º]
即(x-2)²+(y-2)²=18
圆心C(2,2),半径r=3√2
圆上至少有三个点到直线ax+by=0
的距离为2√2
那么圆心C到直线的距离≤√2
即|2a+2b|/√(a²+b²)≤√2
∴(2a+2b)²≤2(a²+b²)
∴a²+b²+4ab≤0
∴(a/b)²+4(a/b)+1≤0
∴-2-√3≤a/b≤-2+√3
∴直线斜率k=-a/b
∴tan15º=2-√3≤k≤2+√3=tan75º
∴倾斜角范围是[15º,75º]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询