求证(a/a+b)+(b/b+c)+(c/c+a)大于等于1 abc分别大于0
展开全部
因为a,b,c均大于0,
(a/a+b)+(b/b+c)+(c/c+a)
所以a+b,b+c,c+a均小于a+b+c,且均大于0
所以(a/a+b)>(a/a+b+c),(b/b+c))>(b/a+b+c),(c/c+a))>(c/a+b+c)
故:(a/a+b)+(b/b+c)+(c/c+a)>(a/a+b+c)+(b/a+b+c)+(c/a+b+c)=1
从而:(a/a+b)+(b/b+c)+(c/c+a)大于等于1
(a/a+b)+(b/b+c)+(c/c+a)
所以a+b,b+c,c+a均小于a+b+c,且均大于0
所以(a/a+b)>(a/a+b+c),(b/b+c))>(b/a+b+c),(c/c+a))>(c/a+b+c)
故:(a/a+b)+(b/b+c)+(c/c+a)>(a/a+b+c)+(b/a+b+c)+(c/a+b+c)=1
从而:(a/a+b)+(b/b+c)+(c/c+a)大于等于1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询