2个回答
展开全部
在x∈[0,2π]内解sin(x + 1) = 0
解得x = π - 1,x = 2π - 1
在x∈[0,π - 1]和[2π - 1,2π],sin(x + 1) > 0
在x∈[π - 1,2π - 1],sin(x + 1) < 0
∴∫(0→2π) |sin(x + 1)| dx
= ∫(0→π - 1) sin(x + 1) dx - ∫(π - 1→2π - 1) sin(x + 1) dx + ∫(2π - 1→2π) sin(x + 1) dx
= [1 + cos(1)] - [- 2] + [1 - cos(1)]
= 4
解得x = π - 1,x = 2π - 1
在x∈[0,π - 1]和[2π - 1,2π],sin(x + 1) > 0
在x∈[π - 1,2π - 1],sin(x + 1) < 0
∴∫(0→2π) |sin(x + 1)| dx
= ∫(0→π - 1) sin(x + 1) dx - ∫(π - 1→2π - 1) sin(x + 1) dx + ∫(2π - 1→2π) sin(x + 1) dx
= [1 + cos(1)] - [- 2] + [1 - cos(1)]
= 4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询