设α为n维列向量,E为n阶单位矩阵,证明A=E-2αα^T/(α^Tα)是正交矩阵
2个回答
展开全部
证明: 因为 A=E-2αα^T/(α^Tα)
所以 A^T=E^T-2(αα^T)^T/(α^Tα)=E-2αα^T/(α^Tα)
所以 AA^T = [E-2αα^T/(α^Tα)][E-2αα^T/(α^Tα)]
= E-2αα^T/(α^Tα)-2αα^T/(α^Tα)+4αα^Tαα^T/(α^Tα)^2
= E-4αα^T/(α^Tα)+4α(α^Tα)α^T/(α^Tα)^2
= E-4αα^T/(α^Tα)+4αα^T/(α^Tα)
= E
所以A是正交矩阵.
所以 A^T=E^T-2(αα^T)^T/(α^Tα)=E-2αα^T/(α^Tα)
所以 AA^T = [E-2αα^T/(α^Tα)][E-2αα^T/(α^Tα)]
= E-2αα^T/(α^Tα)-2αα^T/(α^Tα)+4αα^Tαα^T/(α^Tα)^2
= E-4αα^T/(α^Tα)+4α(α^Tα)α^T/(α^Tα)^2
= E-4αα^T/(α^Tα)+4αα^T/(α^Tα)
= E
所以A是正交矩阵.
更多追问追答
追问
2(αα^T)^T/(α^Tα)=2(αα^T)/(α^Tα)?
追答
2(αα^T)/(α^Tα)
这个式子中 2/(α^Tα) 是一个数
αα^T 是n阶矩阵
(αα^T) = (α^T)^Tα^T = αα^T
--(AB)^T=B^TA^T
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询