l;如图,C为线段AE上一动点(不与点A、E重合).

如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于O,AD与BE交与点P,BE与CD交于点Q,连接CO。现有5个结... 如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于O,AD与BE交与点P,BE与CD交于点Q,连接CO。现有5个结论;1.AD=BE;2.CO平分∠AOE;3.AP=BQ;40DE=DP;5.∠AOB=60°,要证明(每个) 展开
后谊干5
2012-12-26 · TA获得超过2.8万个赞
知道大有可为答主
回答量:1648
采纳率:100%
帮助的人:998万
展开全部
解:∵等边△ABC和等边△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
∴△ACD≌△BCE(SAS),
∴AD=BE,
∴①正确,
∵△ACD≌△BCE,
∴∠CBE=∠DAC,
又∵∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
又∵AC=BC,
∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°可知△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE②正确,
∵△CQB≌△CPA,
∴AP=BQ③正确,
∵AD=BE,AP=BQ,
∴AD-AP=BE-BQ,
即DP=QE,
∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
∴∠DQE≠∠CDE,故④错误;
∵∠ACB=∠DCE=60°,
∴∠BCD=60°,
∵等边△DCE,
∠EDC=60°=∠BCD,
∴BC∥DE,
∴∠CBE=∠DEO,
∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,
∴⑤正确.
故正确的有:①②③⑤.

望采纳,若不懂,请追问。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式