方阵A可逆的充要条件是

教育小百科达人
2019-05-01 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:476万
展开全部

线性代数中,给定一个 n 阶方阵 A,若存在一 n 阶方阵 B 使得 AB = BA = In,其中 In 为 n 阶单位矩阵,则称 A 是可逆的,且 B 是 A 的逆阵,记作 A 。

若方阵 A 的逆阵存在,则称 A 为非奇异方阵或可逆方阵。

给定一个 n 阶方阵 A,则下面的叙述都是等价的:

A 是可逆的、A 的行列式不为零、A 的秩等于 n(A 满秩)、A 的转置矩阵 A也是可逆的、AA 也是可逆的、存在一 n 阶方阵 B 使得 AB = In、存在一 n 阶方阵 B 使得 BA = In。

A是可逆矩阵的充分必要条件是︱A︱≠0(方阵A的行列式不等于0)。

扩展资料:

矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。

A的特征值全不为0;A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵);A等价于n阶单位矩阵;A可表示成初等矩阵的乘积。

齐次线性方程组AX=0 仅有零解;非齐次线性方程组AX=b 有唯一解;A的行(列)向量组线性无关;任一n维向量可由A的行(列)向量组线性表示。

参考资料来源:百度百科——矩阵可逆

爱人诊所
推荐于2017-09-29 · 分享大家需要的资源,未做筛选,勿怪。
爱人诊所
采纳数:536 获赞数:6830

向TA提问 私信TA
展开全部
在线性代数中,给定一个 n 阶方阵 A,若存在一 n 阶方阵 B 使得 AB = BA = In,其中 In 为 n 阶单位矩阵,则称 A 是可逆的,且 B 是 A 的逆阵,记作 A 。
若方阵 A 的逆阵存在,则称 A 为非奇异方阵或可逆方阵。

给定一个 n 阶方阵 A,则下面的叙述都是等价的:
A 是可逆的、A 的行列式不为零、A 的秩等于 n(A 满秩)、A 的转置矩阵 A也是可逆的、
AA 也是可逆的、存在一 n 阶方阵 B 使得 AB = In、存在一 n 阶方阵 B 使得 BA = In。

A是可逆矩阵的充分必要条件是︱A︱≠0(方阵A的行列式不等于0)。
来自:求助得到的回答
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式