各项为正数的数列an,前n项和为Sn,且Sn=(√Sn-1+√a1)^2(n>=2),若bn=(an+1/an)+(an/an+1),
1个回答
展开全部
由Sn=[√(Sn-1)+√(a1)]²得:√Sn-√(Sn-1)=√(a1),即√(Sn)是一个首项和公差均为√(a1)的等差数列;
∴ √(Sn)=n*√(a1),Sn=n²*(a1);
则 an=(Sn)-(Sn-1)=[n²-(n-1)²]*(a1)=(2n-1)(a1);
∴ bn=[(an+1)/(an)+(an)/(an+1)]=[(2n+1)/(2n-1)+(2n-1)/(2n+1)]=2[(4n²+1)/(4n²-1)]=2+2/(4n²-1);
∑bn=2n+∑[2/(4n²-1)]=2n+∑{[1/(2n-1)]-[1/(2n+1)]}=2n+{1-[1/(2n+1)]}=(2n+1)-[1/(2n+1)];
∴ √(Sn)=n*√(a1),Sn=n²*(a1);
则 an=(Sn)-(Sn-1)=[n²-(n-1)²]*(a1)=(2n-1)(a1);
∴ bn=[(an+1)/(an)+(an)/(an+1)]=[(2n+1)/(2n-1)+(2n-1)/(2n+1)]=2[(4n²+1)/(4n²-1)]=2+2/(4n²-1);
∑bn=2n+∑[2/(4n²-1)]=2n+∑{[1/(2n-1)]-[1/(2n+1)]}=2n+{1-[1/(2n+1)]}=(2n+1)-[1/(2n+1)];
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询