如图,AD是△ABC的高,若AB+BD=AC+CD,求证:△ABC是等腰三角形.

 我来答
华源网络
2022-06-28 · TA获得超过5555个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:142万
展开全部
证明:延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF.
∵AB+BD=CD+AC,
∴DE=DF,
又AD⊥BC,
∴△AEF是等腰三角形;
∴∠E=∠F;
∵AB=BE,
∴∠ABC=2∠E;
同理,得∠ACB=2∠F;
∴∠ABC=∠ACB,
∴AB=AC,即△ABC是等腰三角形.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式