一道解析几何求解
一个椭圆x^2/2+y^2=1,如图,设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P求证:PF1+PF2是定值...
一个椭圆x^2/2+y^2=1,如图,设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P
求证:PF1+PF2是定值 展开
求证:PF1+PF2是定值 展开
展开全部
设A点横坐标为x1,B点横坐标为x2
过A作AM垂直x轴于M,过B作BN垂直x轴于N
AF1/BF2=F1M/F2N=(x1+c)/(x2-c)
PF1/BF1=AF1/(AF1+BF2)=(x1+c)/[(x1+c)+(x2-c)]=(x1+c)/(x1+x2)
PF1=[(x1+c)/(x1+x2)]*BF1
PF2/AF2=BF2/(AF1+BF2)=(x2-c)/[(x1+c)+(x2-c)]=(x2-c)/(x1+x2)
PF2=[(x2-c)/(x1+x2)]*AF2
PF1+PF2=[(x1+c)/(x1+x2)]*BF1+[(x2-c)/(x1+x2)]*AF2
=[(x1+c)/(x1+x2)]*(a+ex2)+[(x2-c)/(x1+x2)]*(a-ex1)
=[(x1+c)*(a+ex2)+(x2-c)(a-ex1)]/(x1+x2)
=(ax1+cex2+ax2+cex1)/(x1+x2)
=a+ce
=根2+1*(根2)/2
=(3根2)/2
过A作AM垂直x轴于M,过B作BN垂直x轴于N
AF1/BF2=F1M/F2N=(x1+c)/(x2-c)
PF1/BF1=AF1/(AF1+BF2)=(x1+c)/[(x1+c)+(x2-c)]=(x1+c)/(x1+x2)
PF1=[(x1+c)/(x1+x2)]*BF1
PF2/AF2=BF2/(AF1+BF2)=(x2-c)/[(x1+c)+(x2-c)]=(x2-c)/(x1+x2)
PF2=[(x2-c)/(x1+x2)]*AF2
PF1+PF2=[(x1+c)/(x1+x2)]*BF1+[(x2-c)/(x1+x2)]*AF2
=[(x1+c)/(x1+x2)]*(a+ex2)+[(x2-c)/(x1+x2)]*(a-ex1)
=[(x1+c)*(a+ex2)+(x2-c)(a-ex1)]/(x1+x2)
=(ax1+cex2+ax2+cex1)/(x1+x2)
=a+ce
=根2+1*(根2)/2
=(3根2)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询